

Illinois Tech Real Time Communications Conference October 13-15, 2020

Cognitive Telescope Network: Internet of Telescopes

Development of a Passively Safe Network of Small Telescopes Connected using IBM Internet of Things Protocols

October 13, 2020

Dr. Jeff Terry terryj@iit.edu Professor of Physics Illinois Institute of Technology

Alunava (Ron) Majumdar

arunāva@us.ibm.com

Architect, Emerging Technology, Lead, Asset Portfolio Strategy, Lead, Chicago Center for Advanced Studies IBM Watson and Cloud Platform

Rahul Gupta

rahul.gupta@us.ibm.com

Senior Software Architect, IBM Academy of Technology, IBM Internet of Things Platform

ILLINOIS INSTITUTE OF TECHNOLOGY

Dr. Jeff Terry

terryj@iit.edu Professor of Physics Illinois Institute of Technology

Dr. Jeff Terry is a professor of physics at the Illinois Institute of Technology, where his main research focus is on energy systems. His group works to develop new ways to deal with radioactive waste; to understand radiation damage mechanisms in materials; and to synthesize novel materials for energy storage and conversion. He also simulates the economic costs of building new energy systems, including small modular nuclear reactors. Prior to joining the faculty at Illinois Tech, he was a staff scientist at Los Alamos National Laboratory. There, he worked on the Stockpile Stewardship and Management Program and the Waste Isolation Pilot Plant (WIPP) and was a member of the team that sent the first waste shipment to WIPP. He currently writes a regular column for the Bulletin of the Atomic Scientists. He is a former scientific director of the Advanced Test Reactor National Scientific User Facility. Terry received his doctorate in chemical physics from Stanford University in 1997 after obtaining a bachelor's degree in chemistry from the University of Chicago in 1990.

Arunava (Ron) Majumdar

arunava@us.ibm.com

Architect, Emerging Technology, Lead, Asset Portfolio Strategy, Lead, Chicago Center for Advanced Studies IBM Watson and Cloud Platform

<u>@arunavaibm</u> 🔰 <u>@arunavaibm</u>

Arunava (Ron) Majumdar is a Watson and Cloud architect with over 20 years of experience in Software design and development. He leads the Asset Portfolio Strategy for the IBM Watson and Cloud Platform and is the lead for the Chicago Center for Advanced Studies. He has been involved with large scale design, architecture and implementation for IBM clients, helping them successfully through the project lifecycle. He has architected High Availability and Disaster Recovery solutions with IBM integration products and worked on performance testing and securing client environments.

Ron started as a software engineer working with Object Oriented Programing languages, Middleware integration technologies and Relational Databases. He is currently working on Watson services, Internet-of-Things, Micro-services, API Economy, Hybrid Integration and Pattern-based automation. He is deeply involved with moving workloads to the cloud and Application Modernization. Ron has several patents and published assets to his credit and is collaborating with Research faculty and Universities on innovative ideas and their implementations with emerging technologies. He is also leading several efforts for a comprehensive innovation strategy for IBM in the Greater Chicago area.

Rahul Gupta

rahul.gupta@us.ibm.com

Senior Software Architect, IBM Academy of Technology, IBM Internet of Things Platform

Rahul Gupta, STSM, is a Senior Software Engineer with IBM Watson Internet of Things Business Unit. He is a Certified Service Oriented Architecture (SOA) Architect with twelve years of professional experience in IBM messaging technologies. In his current role, he works as technical lead and Architect in the Watson Internet of Things Platform Development and Blockchain. Rahul is also a Senior Member of the IBM Academy of Technology.

- > Evolution of the telescope network
 - Multi-messenger Astronomy
 - Architecture of the network
 - Event monitoring and follow-up

Safely connecting telescopes to the network

- Remote Observatory
- Protecting the telescope
- INDIGO server and astrometry

> Controlling telescopes from the Cloud

- IBM Watson IoT Platform overview
- ✤ MQTT Protocol for device communication
- Design for connected telescopes

"Only those who will risk going too far can possibly find out how far one can go." — T.S. Eliot

Agenda

Cognitive Telescope Network: **Evolution of Thought**

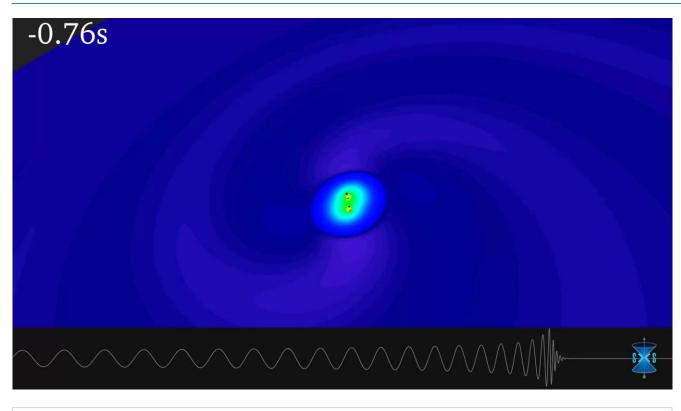
Brainstorming and developing Use Cases through Design Thinking

Photons as Messenger

Ever since the dawn of time human beings are trying to decipher the mysteries of the Universe by looking at the Sky.

~200 BC – **Hipparchus** creates a magnitude system (1-6) and catalogs 850 stars

1610 – **Galileo Galilei** publishes **Sidereus Nuncius** from his observations from the telescope


1668 – Isaac Newton builds reflecting telescope

1990 – **Hubble Space Telescope** is launched by NASA

2009 – Largest Telescope on Earth commissioned Gran Telescopio Canarias, Canary Islands, Spain beating Keck 1 and Keck 2, Mauna Kea Observatory, Hawaii

2012 – Construction of Giant Magellan Telescope will be located at Cerro Las Campanas at Las Campanas Observatory in the Atacama Desert of Chile

2018 – James Webb Space Telescope expected to be launched

Since the prediction by Einstein scientists have been trying to detect Gravitational Waves.

- Detect not with light, but with gravity.
- Gravitational waves are complementary to photons
 - Photons are made by atoms
 - Gravitational waves made by the dynamic motion of matter
- Laser Interferometers, not telescopes are required for the detection
- LIGO US-based detectors at Livingston, Louisiana, and Hanford, Washington
- VIRGO Italy-France-based initiative at Santo Stefano a Macerata, Cascina , Italy
- LISA 1st Space-based Interferometer using 3 satellites, European collaboration

Courtesy: Simulating eXtreme Spacetime (SXS) Project: www.black-holes.org

Gravitational Wave Detectors

(1995) TAMA 300 - Japan - Decommissioned

(1995) GEO 600 - Sarstedt, Ruthe, Germany: http://www.geo600.org/

(2002) LIGO - Livingston, Louisiana and Hanford, Washington, USA: http://www.ligo.org/

(2003) MiniGrail - Leiden University, Netherlands: http://www.minigrail.nl/

(2005) Pulsar Timing Array (using radio-telescope): https://en.wikipedia.org/wiki/Pulsar_timing_array

- Parkes PTA, European PTA, North American Nanohertz Observatory for Gravitational Waves (NANOGrav) (2006) CLIO - prototype for KAGRA

(2007) Virgo - Santo Stefano a Macerata, Cascina , Italy: https://www.ego-gw.it/

(2015) LISA Pathfinder, a development mission for LISA, launched in Dec. - switched off 18 July, 2017

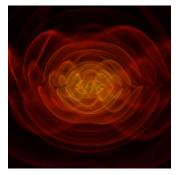
(2018) KAGRA - Gifu Prefecture, Japan: http://gwcenter.icrr.u-tokyo.ac.jp/en/

(2023) IndIGO - (Hingoli, Maharashtra?), India: http://www.gw-indigo.org/tiki-index.php

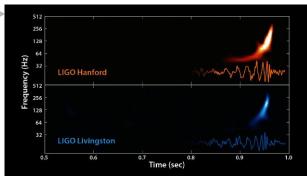
(2025) TianQin - Sun Yat-sen University, Zhuhai campus, China [Space-based]

(2027) DECIGO - Japan [Space-based]

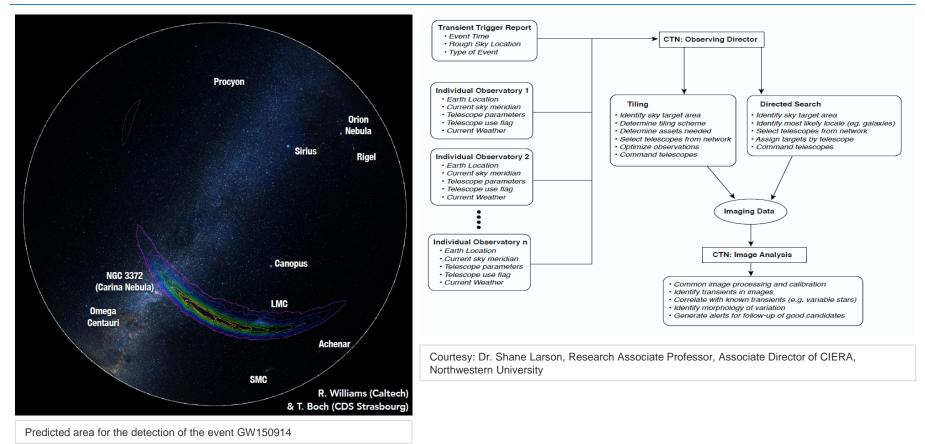
(2034) LISA - Denmark, France, Germany, Italy, The Netherlands, Spain, Switzerland and the UK

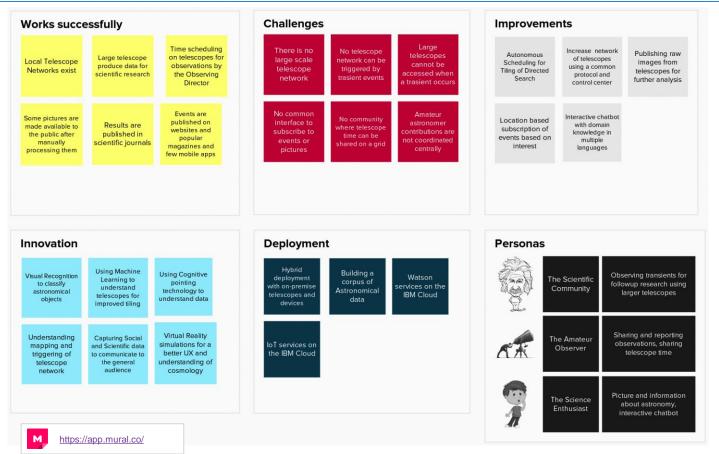

- supported US, [Space-based]: https://www.lisamission.org/

(2030s) Einstein Telescope - European Union: http://www.et-gw.eu/

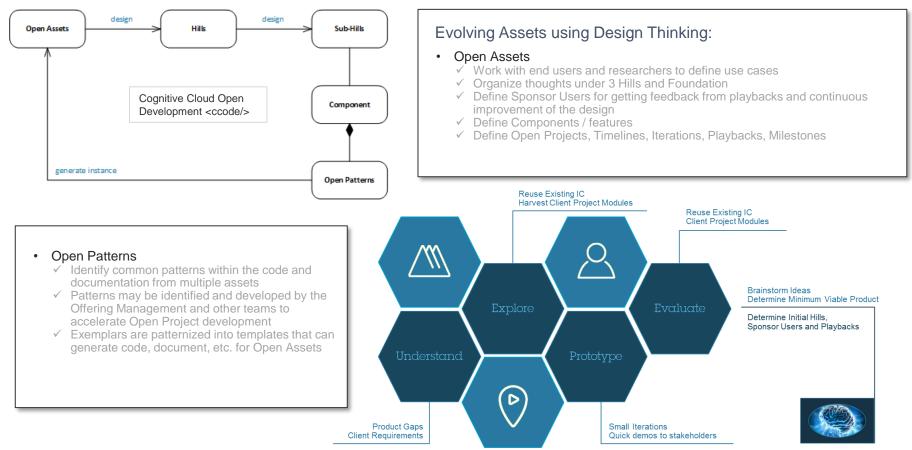

LIGO - Livingston, Louisiana, USA.

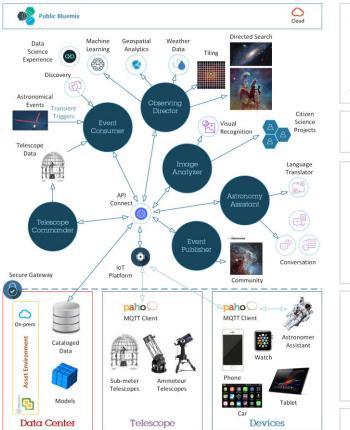
GW150914


29 solar mass black hole + 36 solar mass black hole 1.3 billion lightyears away (400 Mega parsec)


Illinois Tech Real Time Communications | 2020

C. Messenger (Glasgow) & LIGO

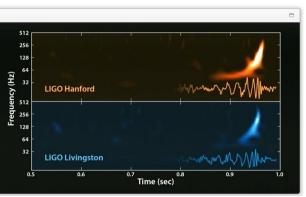

Multi-messenger Astronomy



IBM Watson Brainstorming: Defining the problem

Design Thinking

Gravitational Waves Detected 100 Years After Einstein's Prediction -


LIGO Opens New Window on the Universe with Observation of Gravitational Waves from Colliding Black Holes.

https://www.ligo.caltech.edu/news/ligo20160211

LIGO can listen to gravitational waves but cannot see the event

- Provide identification and analysis of . astronomical data from multiple sources
- Event notifications to mobile devices for . building interest in the Community
- Remote control instructions to telescopes point . to the specific location on the grid in the sky
- Visual Recognition integration with Zooniverse . for gamification of un identified events
- LIGO data feed is parsed into canonical models н. and passed to the Event Analyzer
- If a Gravitational Wave event is detected, the available telescopes in the network are mapped into a grid to scan the sky
- Weather and Geospatial information is used to determine optimal coverage of the viewing area

LIGO Update on the Search for Gravitational Waves

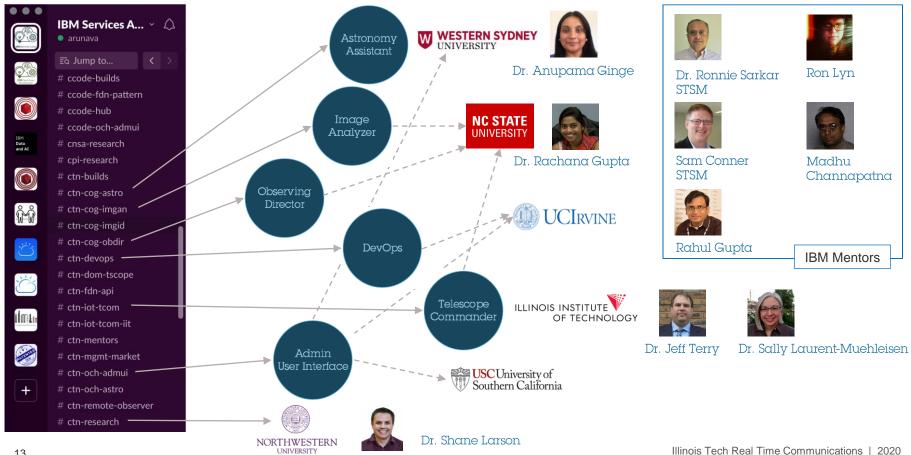
Universities in the collaboration

UNIVERSITY

USC University of

Southern California

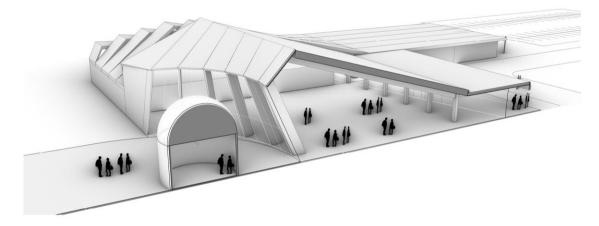
UNIVERSITY



Using multi-messenger astronomy we have eves and ears on the transient phenomena in the Cosmos

Transient Event Sources

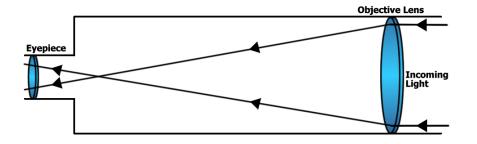
Gravitational Waves	Gravitational-Wave Candidate Event Database (GraceDB) https://gracedb.ligo.org/latest/	
Supernova	SuperNova Early Warning System (SNEWS) https://snews.bnl.gov/	
Gama Ray Bursts	Gama Ray Burst Host Studies (GHostS) http://www.grbhosts.org/Ws.aspx	
Variable Stars	American Association of Variable Star Observers (AAVSO) https://www.aavso.org/vstar	
Fast Radio Burst	Fast Radio Burst Catalogue (FRBCat) http://frbcat.org/	
Sky Survey	Make Alerts Really Simple (MARS) https://mars.lco.global/	
	Zwicky Transient Facility (ZTF) https://www.ztf.caltech.edu/	


Cognitive Telescope Network: Safely connecting telescopes

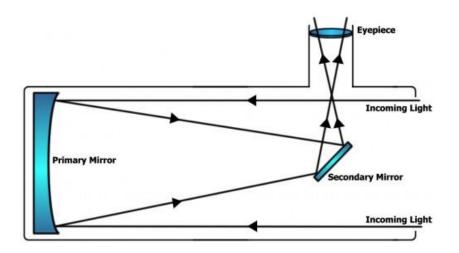
Telescopes, protecting the devices and astrometry

In 2016, an Illinois Tech alumnus, John Buckley, approached us to design a remote astronomy camp for STEM Education. This began our studies in computer assisted remote astronomy.

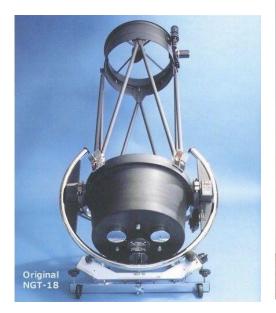
Proposed design for the observatory



- For this site to be useful for University students, it required remote control of the telescope
- Concurrent, with the design work on the remote observatory, we undertook an effort to start designing remote telescope software that could be utilized to #SAFELY control a remote telescope
- In 2018, the IBM Chicago team notified us of an effort to design a network of remote telescopes called the Cognitive Telescope Network controlled by IBM Watson technology.


Refractor Telescope

- Typically not very large
- Little maintenance
- Best used for rentals and educational groups



- Can be produced at larger sizes
- Require more maintenance that refractor
- Best for permanent pieces and imaging

- Telescopes are of different shapes and sizes
- They are all fragile and expensive
- Without exception, they will allow you to destroy themselves

Reflector Telescope

DESIGN

- Telescope has to take input from IBM Watson
- Determine if the telescope can safely observe
- Safely move telescope to the object
- Safely observe the object
- Report the results back to Watson
- Move the telescope to a safe storage location
- Shutdown the telescope
- It must do this every time
- It must do this for every telescope
- It cannot fail

OBJECTIVES

Ensure safe movement of the telescope by avoiding objects

- Recognizing where the no-go areas of the telescope are
- Implementing safe path-finding algorithms for the telescope to follow

PLAN

- Establish possible range of motion of the telescope
- Map out no-go zones for the telescope
- Develop an initial calibration setup on site
- Establish way of interpreting and storing the boundaries
- Convert the Matlab path-finding algorithm into Python

Telescope Safety

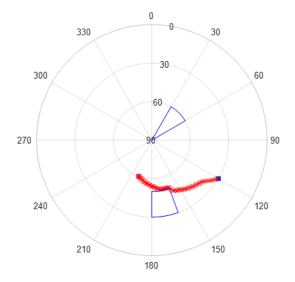


Figure (1): Implementation of the algorithm using Matlab. The blue closed polygons are the no go areas while the red line is the path.

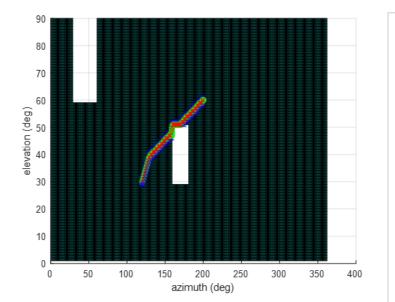


Figure (2): Implementation of the algorithm using Matlab. The white shapes are the no go areas while the red line is the path.

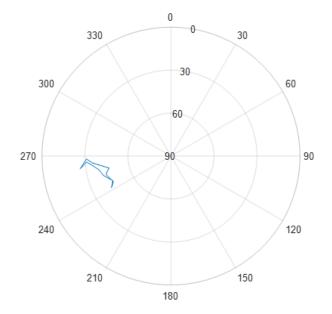
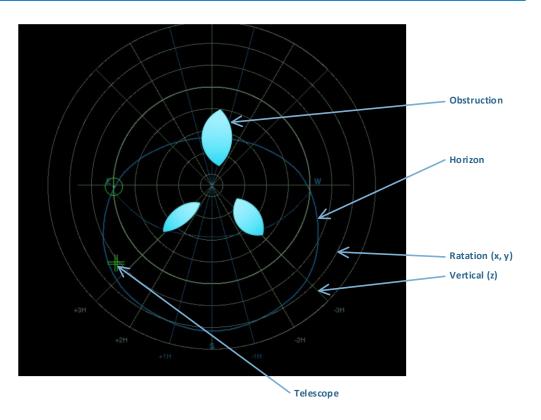
DESIGN

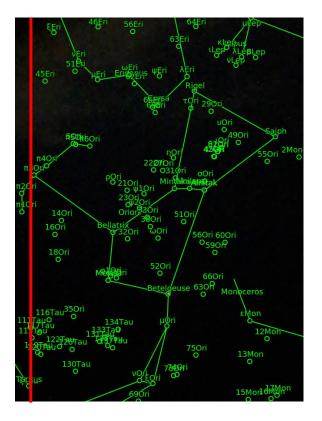
•

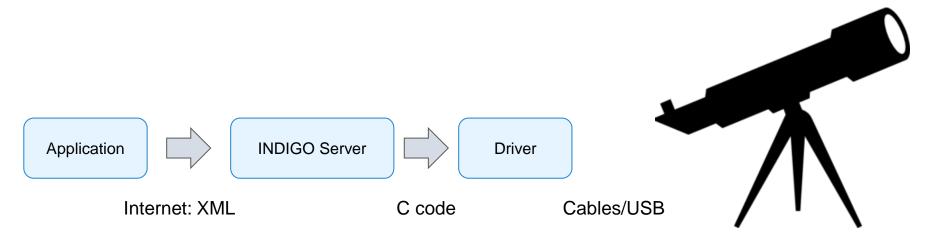
.

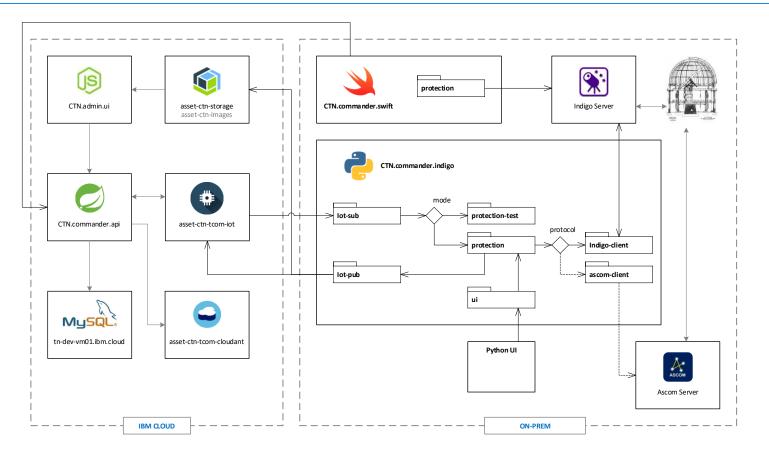
- Developed procedure for mapping the no-go zones of the telescope
- Developed path-finding algorithm (A* algorithm) that reads boundaries from *txt files, plots them, and finds the best path

Telescope Safety


Figure (3): A danger zone mapped out by the telescope

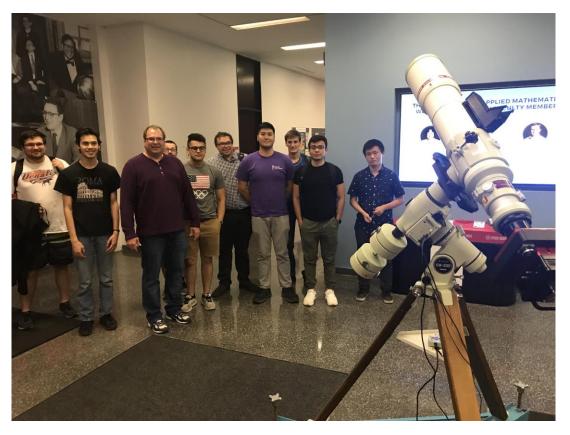

Astrometry


- Evolved from INDI
- Shared protocol to control any telescope
- Uses XML and JSON commands
- Server takes commands and passes along to telescope
- Server has open Telnet port for external tools to communicate

Motion Control

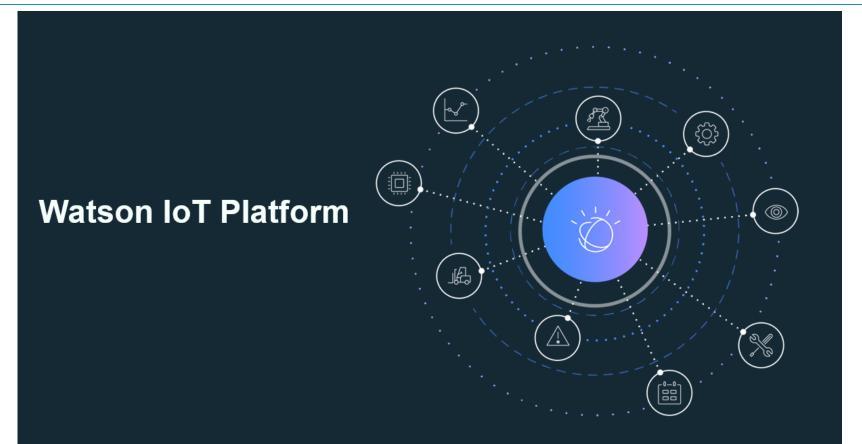

IBM Cloud Cognitive Telescopic Network

Telescope Commander Design



IBM Watson Integration with the IIT Telescope

https://ipro.iit.edu/



Cognitive Telescope Network: Controlling telescopes

Watson Internet-of-Things Platform, MQTT Protocol and telescopes

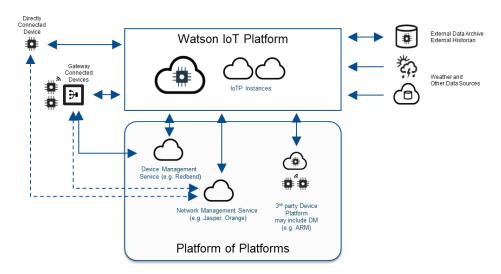
IBM Cloud Cognitive Telescopic Network

Watson IoT Platform

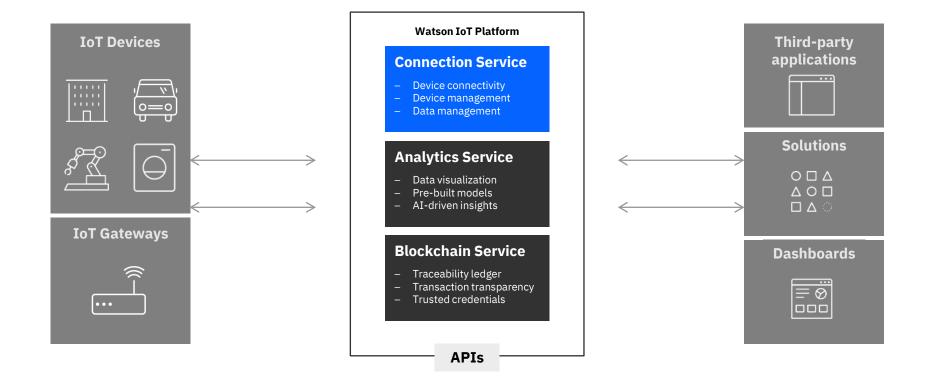
Watson IoT Platform is a foundation for IBM industry solutions and IoT business use cases

IBM Cloud Cognitive Telescopic Network

Flexible device and system management for your IoT devices and applications


Device Management

- Flexible device management console provides a preconfigured means to send events such as device reboot, factory reset, or custom device functions such firmware management and upgrades.
- Gateway Management
- Extra functionality and control with gateways as first class type, enabling single connection actions, automatic registrations, and device management on attached devices as separately addressable entities



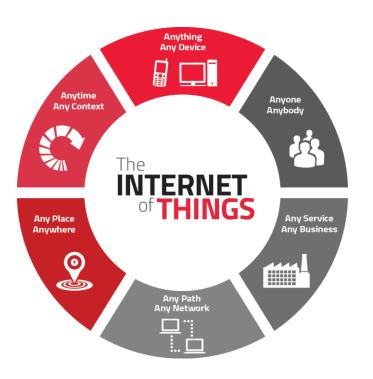
Platform of Platforms

Watson IoT Platform can be integrated with other platforms including 3rd party device and network management platforms and enable system management with specialized services such as AT&T Control Center, Jasper, Orange SIM

IBM Cloud Cognitive Telescopic Network

Internet of Things bring new Challenges

Requires a real time Event Driven model


Publishing information one to many

Listening for events as they happen

Sending small data packets from small devices

Reliably pushing data over unreliable networks

For IoT messaging (often is) > HTTP Request/Response

IBM Cloud Cognitive Telescopic Network

OASIS 🕅

MQTT Version 3.1.1

OASIS Standard

29 October 2014

Specification URIs

This version:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.doc (Authoritative) http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

Previous version:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cos01/mqtt-v3.1.1-cos01.doc (Authoritative) http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cos01/mqtt-v3.1.1-cos01.html http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/cos01/mqtt-v3.1.1-cos01.pdf

Latest version:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.doc (Authoritative) http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf

Technical Committee:

OASIS Message Queuing Telemetry Transport (MQTT) TC

Chairs:

Raphael J Cohn (raphael.cohn@stormmq.com), Individual Richard J Coppen (coppen@uk.ibm.com), IBM

Editors:

Andrew Banks (Andrew_Banks@uk.ibm.com), IBM Rahul Gupta (rahul.gupta@us.ibm.com), IBM

Related work:

This specification is related to:

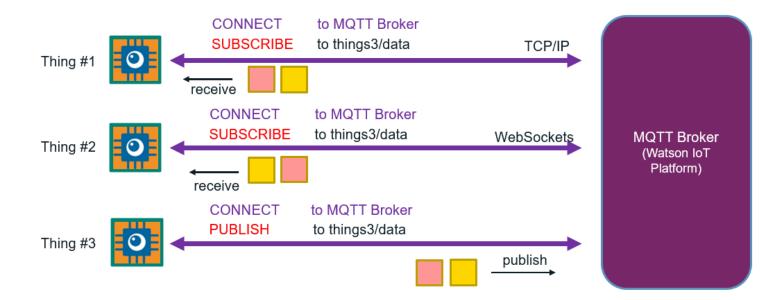
 MQTT and the NIST Cybersecurity Framework Version 1.0. Edited by Geoff Brown and Louis-Philippe Lamoureux. Latest version: http://docs.oasis-open.org/mqtt/mqtt-nistcybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html.

Abstract:

MQTT is a Client Server publish/subscribe messaging transport protocol. It is light weight, open, simple, and designed so as to be easy to implement. These characteristics make it ideal for use in many situations, including constrained environments such as for communication in Machine to Machine (M2M) and Internet of Things (IoT) contexts where a small code footprint is required and/or network bandwidth is at a premium.

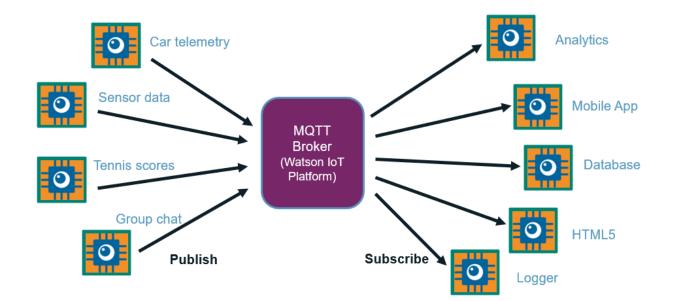
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1os.pdf

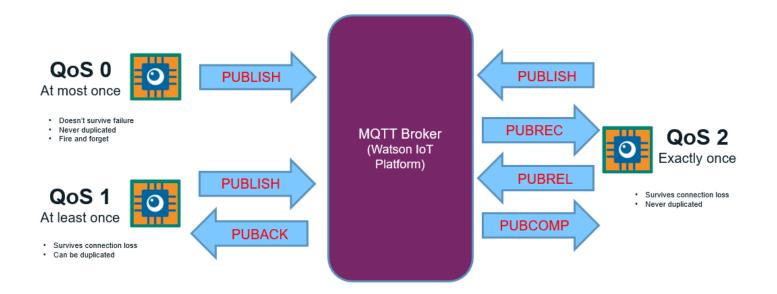
August 2010


MQTT A lightweight protocol for **IoT messaging** Facebook messenger, Billion devices Open specification Open Tiny Clients (Kb) Minimal overhead Efficient format Light weight >Simple QoS for reliability on unreliable network 81 pages specification reliable \geq CONNECT + PUBLISH + SUBSCRIBE + DISCONNECT ISO 29022 Eclipse M2M Invented Published

Late 1990

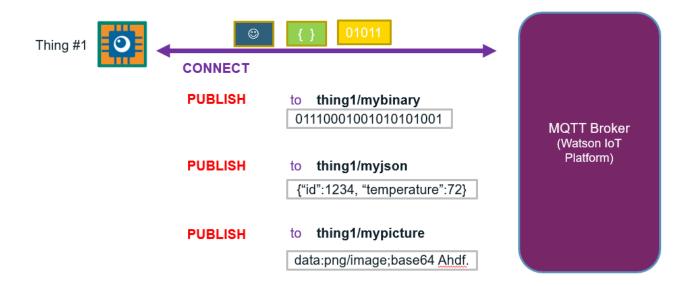
IBM


MQTT bi-directional, async "push" communication

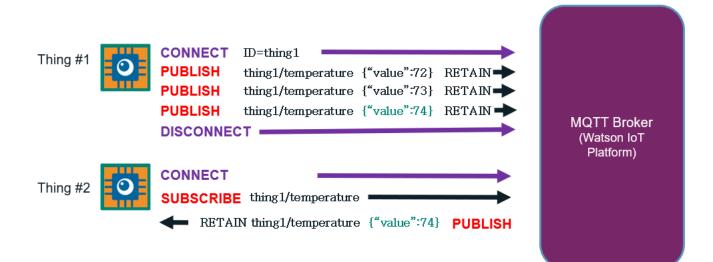

Protocol for IoT

MQTT	simple to implement
Connect	<pre>client = new Messaging.Client(hostname, port, clientId); client.onMessageArrived = messageArrived; client.onConnectionLost = connectionLost; client.connect({onSuccess: connectionSuccess});</pre>
Subscribe	<pre>function connectionSuccess() { client.subscribe("planet/mars");</pre>
Publish	<pre>var msg = new Messaging.message("Hello Mars"); msg.destinationName = "planet/mars"; client.publish(msg); }</pre>
Unsubscribe	<pre>function messageArrived(msg) { console_log(msg.payloadString);</pre>
Disconnect	<pre>client.unsubscribe("planet/mars"); client.disconnect(); }</pre>

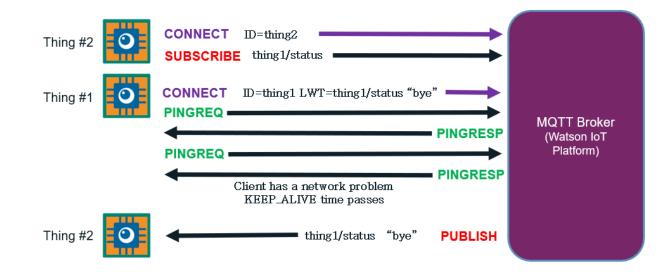
MQTT pub/sub decouples senders from receivers



MQTT Quality of Service for reliable messaging



Protocol for IoT


MQTT Agnostic payload for flexible delivery

MQTT retained messages for last value caching

MQTT last will and testament for presence

Protocol for IoT

The IBM Watson IoT Platform

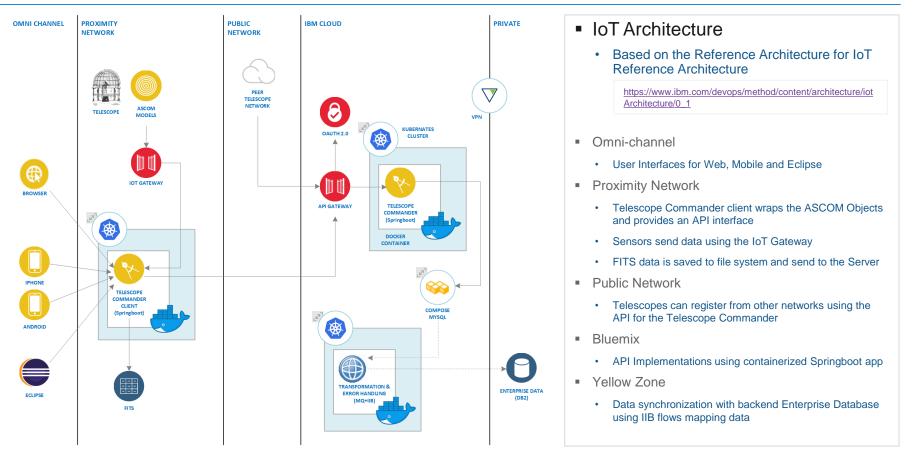
IBM Watson IoT Platform Connect

Attach, Collect, & Organize, Device Management, Secure Connectivity, Visualization

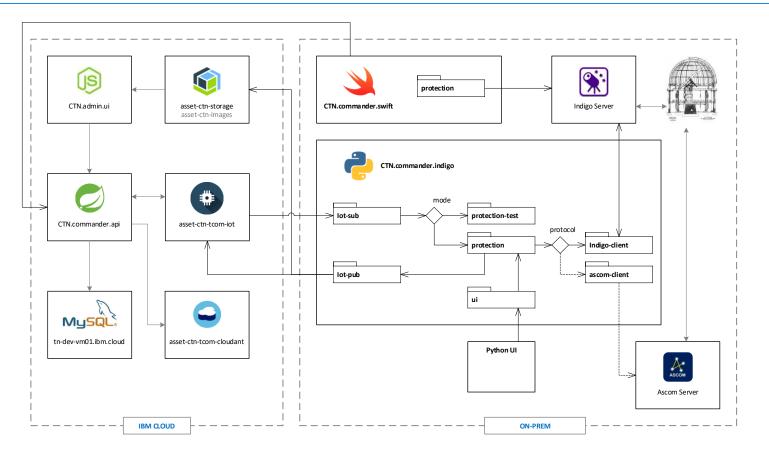
IBM Watson IoT Platform Information Management

Storage & Archive, Metadata Management, Reporting, Streaming data, Parsing and Transformation, Manage unstructured data Weather APIs

IBM Watson IoT Platform Analytics


Predictive, Cognitive, Real-time, and Contextual

IBM Watson IoT Platform Risk Management


Security Analytics, Data Protection, Auditing/Logging, Firmware Updates, Key/Certificate Management, Org Specific <u>Security.Blockchain</u> (Beta)

Reference Architecture

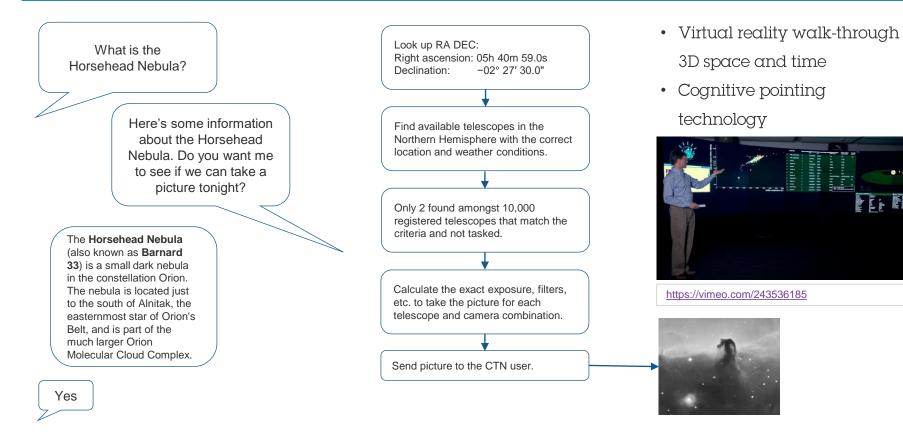
Telescope Commander Design

IBM Watson Watson Academic Cloud

Cloud Search resources and offerings			Q Catalog Docs Sur	oport Manage 🗸	1622773 - IBM	لا لگ
Resource list					с	reate resource
					Colla	apse all Expand all
Name 🔺	Group	Location	Offering	Status	Tags	
Q Filter by name or IP address	Filter by group or org	Filter	• Q Filter	Q Filter	Filter	•
✓ Devices (8)						
e ben-hack.ibm.cloud	Classic Infrastructure	Dallas 13	Virtual Server	View status		
ctn-dev-ascom.asset.ibm.cloud	Classic Infrastructure	Dallas 13	Virtual Server	View status	-	••••
ctn-dev-vm01.IBM.cloud	Classic Infrastructure	Dallas 13	Virtual Server	View status	-	
ctn-dev-vm02.IBM.cloud	Classic Infrastructure	Dallas 13	Virtual Server	View status	-	•••
eeh-dev-01.asset.ibm.cloud	Classic Infrastructure	Dallas 13	Virtual Server	View status	<u></u>	•••
Aube-dal13-cr6132eb773b704b02b4856a815	Classic Infrastructure	Dallas 13	Virtual Server	View status	ibm	•••
Aube-dal13-cr6132eb773b704b02b4856a815	Classic Infrastructure	Dallas 13	Virtual Server	View status	ibm	•••
Aube-dal13-cr6132eb773b704b02b4856a815	Classic Infrastructure	Dallas 13	Virtual Server	View status	ibm	
V Clusters (8)						
STP_CAS_team_trial_07242019	RTP-CAS	Dallas	Kubernetes Cluster	Normal	_	•••
asset-ctn	asset-ctn-dev	Dallas	Kubernetes Cluster	Normal	_	
ᅌ big-data	RG-NCSU-BIGDATA	Dallas	Kubernetes Cluster	Normal	-	• • •
ᅌ cluster-elearning-Shadi-Jun20	RG_CAC1_Tam_Test1	Dallas	Kubernetes Cluster	Normal	_	• • •
😧 geb-ciigar-analytics	NCSU_CIIGAR_RG	Washington DC	Kubernetes Cluster	Normal	_	•••

IBM Watson Watson Academic Cloud

✓ Cloud Foundry Apps (3)						
asset-ctn-obdir-eventsub	asset-ctn / ctn-dev	Dallas	Liberty for Java™	Running	_	• • •
asset-ctn-tcom-api	asset-ctn / ctn-dev	Dallas	Liberty for Java™	Running	_	•••
java-test-app	asset-ctn / ctn-dev	Dallas		Running	_	•••
✓ Cloud Foundry Services (8)						
asset-ctn-db-db2 🕣	asset-ctn / ctn-dev	Dallas	Db2	Updated	_	• • •
🔌 asset-ctn-obdir-weather	asset-ctn / ctn-dev	Dallas	Weather Company Data	Deletion failure	_	•••
🔌 asset-ctn-obdir-weather-data	asset-ctn / ctn-dev	Dallas	Weather Company Data	Deletion failure	_	•••
🍊 asset-ctn-obdir-weather-final	asset-ctn / ctn-dev	Dallas	Weather Company Data	Provisioned	_	• • •
🔊 asset-ctn-social-appconn	asset-ctn / ctn-dev	Dallas	App Connect	Provisioned	_	• • •
👶 asset-ctn-streams	asset-ctn / ctn-dev	Dallas	Event Streams	Provisioned	_	•••
💿 asset-ctn-tcom-iot	asset-ctn / ctn-dev	Dallas	Internet of Things Platform	Provisioned	_	•••
🍲 availability-monitoring-auto	asset-ctn / ctn-dev	Dallas	Availability Monitoring	Provisioned	_	•••
✓ Services (11)						
🗞 Visual Recognition-wn11	asset-ctn-dev	Dallas	Visual Recognition	Provisioned	_	• • •
💬 Watson Assistant-z3	asset-ctn-dev	Sydney	Watson Assistant	Provisioned	_	• • •


IBM Watson Watson Academic Cloud

3M Wa	tson Io	oT Plat	form								eruna (?) ID: dł	ava@us.ibm.cor bx9ui
	Bro	owse	Acti	ion Device Types Interfaces							Add	Device 🛨
	Q	Q Search by Device ID								Device Simulator 💿	W Y	
		۵		Device ID	Status	Device Type	Class ID	Date Added	Descriptive Location	Added By	Device Class	
	;	> [2cc825df-b8a0-4b48-a6dc-713226e516da	Disconnected	TelescopeRequest	Device	Oct 10, 2019 7:58 PM	Illinois Institute of Technology	kdillon1@hawk.iit.edu		
	;	> [2cc825df-b8a0-4b48-a6dc-713226e516da	Disconnected	TelescopeResponse	Device	Oct 10, 2019 8:02 PM	Illinois Institute of Technology	kdillon1@hawk.iit.edu		
	2	> [234abe31-4d01-32ab-bdac-a96e4490dc78	Disconnected	TelescopeRequest	Device	Oct 12, 2020 3:30 PM	Simulated Telescope 001	a-dbx9ui-ozory9fvl4		
	2	> [234abe31-4d01-32ab-bdac-a96e4490dc78	Disconnected	TelescopeResponse	Device	Oct 12, 2020 3:30 PM	Simulated Telescope 001	a-dbx9ui-ozory9fvl4		
	3	> [b5b83b82-c0ab-3924-8147-2ef2d65dab10	Disconnected	TelescopeRequest	Device	Oct 12, 2020 3:30 PM	Simulated Telescope 002	a-dbx9ui-ozory9fvl4		
	3	> [b5b83b82-c0ab-3924-8147-2ef2d65dab10	Disconnected	TelescopeResponse	Device	Oct 12, 2020 3:30 PM	Simulated Telescope 002	a-dbx9ui-ozory9fvl4		
	3	> [36e7aa09-fc0a-3156-9718-735b9c29bac9	Disconnected	TelescopeRequest	Device	Oct 12, 2020 3:30 PM	Simulated Telescope 003	a-dbx9ui-ozory9fvl4		
	;	> [36e7aa09-fc0a-3156-9718-735b9c29bac9	Disconnected	TelescopeResponse	Device	Oct 12, 2020 3:30 PM	Simulated Telescope 003	a-dbx9ui-ozory9fvl4		
	;	> [785ba2f3-2ef3-35f3-918e-692fafd95a51	Disconnected	TelescopeRequest	Device	Oct 12, 2020 3:31 PM	Simulated Telescope 004	a-dbx9ui-ozory9fvl4		
	3	> [785ba2f3-2ef3-35f3-918e-692fafd95a51	Disconnected	TelescopeResponse	Device	Oct 12, 2020 3:31 PM	Simulated Telescope 004	a-dbx9ui-ozory9fvl4		
	;	> [803becef-0698-3278-b708-fda2debf16e9	Disconnected	TelescopeRequest	Device	Jan 27, 2019 3:27 PM	Simulated Telescope 005	a-dbx9ui-ozory9fvl4		
	3	> [803becef-0698-3278-b708-fda2debf16e9	Disconnected	TelescopeResponse	Device	Jan 27, 2019 3:27 PM	Simulated Telescope 005	a-dbx9ui-ozory9fvl4		
)	> [f678fd57-331e-31ae-8f11-2f3be046c09b	Disconnected	CameraRequest	Device	Jan 27, 2019 3:30 PM	Simulated Telescope 001	a-dbx9ui-ozory9fvl4		
	;	> [f678fd57-331e-31ae-8f11-2f3be046c09b	Disconnected	CameraResponse	Device	Jan 27, 2019 3:30 PM	Simulated Telescope 001	a-dbx9ui-ozory9fvl4		

IBM Watson Future of CTN... we are only limited by our imagination

IBM Watson Related collaborations and conference

Deep Learning for Multimessenger Astrophysics: Real-time Discovery at Scale

ILLINOIS NCSA | National Center for Supercomputing Application

HOME AGENDA TRAVEL/LODGING INFO PARTICIPANTS CODE OF CONDUCT

DEEP LEARNING FOR MULTIMESSENGER ASTROPHYSICS: REAL-TIME DISCOVERY AT SCALE

October 17–19, 2018 NCSA Building 1205 W Clark St, Urbana, IL

Scientific Organizing Committee

- Dr. Federica Bianco New York University; Chair, LSST Transients and Variable Stars Science Collaboration
- Prof. Charles Gammie Astronomy and Physics, University of Illinois at Urbana-Champaign
- Prof. Bill Gropp Director, NCSA; Thomas M. Siebel Chair in Computer Science, University of Illinois at Urbana-Champaign
- Prof. Eliu Huerta, chair Gravity Group Lead, NCSA; Department of Astronomy, University of Illinois at Urbana-Champaign
- Dr. Elise Jennings Data Science Group, Leadership Computing Facility, Argonne National Lab; Associate, Kavli Institute for Cosmological Physics, University of Chicago
- Prof. Daniel S. Katz Assistant Director for Scientific Software and Applications, NCSA
- Prof. Xin Liu Department of Astronomy, University of Illinois at Urbana-Champaign
- Dr. Gautham Narayan Lasker Data Science Fellow, STSCI; LSST Dark Energy Science Collaboration and LSST Transients and Variable Stars Science Collaboration
- Dr. Aaron Saxton Blue Waters Machine Learning Specialist, NCSA
- · Prof. Ed Seidel Physics, Vice President for Economic Development and Innovation, University of Illinois System
- Prof. Zhizhen (Jane) Zhao Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

Local Organizing Committee

- Prof. Gabrielle Allen NCSA; Department of Astronomy, University of Illinois at Urbana-Champaign
- Michelle Butler LSST Lead, NCSA
- Dr. Roland Haas, chair Blue Waters Senior Research Programmer, NCSA
- Prof. Eliu Huerta Gravity Group Lead, NCSA; Department of Astronomy, University of Illinois at Urbana-Champaign
- Jay Roloff Associate Director of Project Management, NCSA
- Stacy Walker Administrative Assistant, NCSA Directors Office

http://www.ncsa.illinois.edu/Conferences/DeepLearningLSST/

HOT-WIRING THE TRANSIENT UNIVERSE

AUGUST 19 - 22, 2019 | NORTHWESTERN UNIVERSITY | EVANSTON, IL | #HOTWIREDVI

HOME PROGRAM PARTICIPANTS TRAVEL & VENUE LODGING & DINING REGISTRATION & DEADLINES CONTACT

PROGRAM

Meeting Rationale

Hot-wiring the Transient Universe VI will explore opportunities and challenges of massively parallel time domain surveys coupled with rapid coordinated multi-wavelength follow-up observations.

The interdisciplinary agenda includes: (1) Future and ongoing science investigations; (2) Information infrastructure for publishing observations in real time; (3) Novel data science to classify events and systems to optimize follow-up campaigns; (4) Hands on activities to train on alerts from current surveys and broker systems.

https://sites.northwestern.edu/hotwired6/

IBM Watson Further reading and recommendations

Machine learning requires the right set of data that can be applied to a learning process. An organization does not have to have big data to use machine learning techniques; however, big data can help improve the accuracy of machine learning models. With big data, it is now possible to virtualize data so it can be stored in the most efficient and cost effective manner whether on-premises or in the cloud. In addition, improvements in network speed and reliability have removed other physical limitations of being able to manage massive amounts of data at the acceptable speed. Add to this the impact of changes in the price and sophistication of computer memory, and with all these technology transitions, it's now possible to imagine how companies can leverage data in ways that would be been inconceivable only five years ago.

https://www-01.ibm.com/common/ssi/cgibin/ssialias?htmlfid=IMM14209USEN

IBM Design Thinking is our approach to applying design thinking at the speed and scale the modern enterprise demands. It's a framework for teaming and action. It helps our teams not only form intent, but deliver outcomes outcomes that advance the state of the art and improve the lives of the people they serve.

https://www-

356.ibm.com/partnerworld/wps/static/watsonbuild/media/IBM%20D esign%20Thinking%20Field%20Guide%20Watson%20Build%20v3 .5 ac.pdf

The IBM Cloud Garage Method Field Guide documents IBM's approach to enable business, development, and operations to continuously design, deliver, and validate new function. The Garage Method's practices, toolchains and architectures are fundamental to transforming the entire product lifecycle.

Practices Tools and toolchains Architectures

https://ibm.biz/garage-method-field-guide

Business pressures demand faster time to market and app modernization. IBM can make this easy for you and bring immediate benefits:

Accelerate digital transformation Improve developer productivity Improve operational efficiency and standardization

https://www.ibm.com/cloud/garage/content/culture/appmodernization-field-guide/

IBM Watson Further reading and recommendations

IBM Cloud Private offers Platform as a Service (PaaS), with the benefits of a public cloud, including rapid deployment and scalability, increased performance, predictable costs, tighter security and flexible management options. A catalog of certified content provides containerized software, middleware, management and acceleration tools. Security and governance Speed and elasticity

Built for DevOps Out of the box accelerators

https://www.ibm.com/cloud/garage/content/culture/private-cloudfield-guide/

The IBM Data and Analytics Strategy Field Guide documents a strategy to connect your business plan and outcomes to your data and analytics requirements. We can help you develop the roadmap to quickly achieve success. It starts with these principles: Make data simple and accessible

Build a trusted analytics foundation Scale insights on demand

https://www.ibm.com/cloud/garage/content/culture/data-analyticsfield-guide/

As cloud technologies continue to challenge the fundamental understanding of how businesses work, smart companies are moving quickly to adapt to a changing set of rules. Adopting the cloud requires a clear roadmap backed by use cases, grounded in practical real-world experience, to show the routes to successful adoption. *The Cloud Adoption Playbook* helps business and technology leaders in enterprise organizations sort through the options and make the best choices for accelerating cloud adoption and digital transformation.

https://www.amazon.com/Cloud-Adoption-Playbook-Transforming-Organization/dp/1119491819