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Outline
•What problem(s) are we trying to solve?
• Embedded Stream Processing
• Architecture
• Implementation
• Practical examples
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Edge Analytics
• Why integrate analytics into edge devices?

• Minimize dependency on network and Cloud resources
• Reduce volume of data sent to Cloud – less network bandwidth and 

less Cloud storage
• Respond faster to detected problems – take local action and 

generate local alerts
• Access to larger volume of/ more frequently sampled sensor data, 

ability to correlate in real time

• Already widely established for autonomous 
vehicles, smart video surveillance….
• Often implemented as dedicated applications 

software or analytics libraries for Python, Java, C….



Goals for a general purpose agent
• Make it easy for the user to implement real time 

analytics at the edge/ in the device
• (Ideally) should not require a CS background

• Handle multiple streams of asynchronous data, 

• Should be robust and recover from bad/missing data, 
reboots, disconnections

• Make it easy to (=minimal configuration) get data in / 
out from a variety of sources/ formats

• Small footprint (~100-300kbytes) to allow integration 
into a wider range of devices and smart sensors
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Approach
• Stream processing / compute flow
• Inherently handles many asynchronous data streams

• Comprehensive function library
• Integrated runtime compiler
• Makes prototyping and experimentation quick and easy

• Range of input methods
• Listen, Polled, Subscribe-Publish….
• Ability to “figure out” what the input data format is

• Range of output methods
• Minimize configuration needed to generate periodic or 

alert reports
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Implementation

Run Time Compiler

Input

Compute

Reporting

Polled 
Input

Exception logging

Alerts
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MQTT
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300kbytes code size (inc compiler)

Embiot

Multithreaded application



Embiot language
• Declarative programming language

• Maps well into a stream processing/ flow computing model

• High level constructs for
• Servers, brokers, gateways
• Devices and Device Classes
• Reports

• Metrics – typed, supports heirarchic naming
• All metrics objects have “.” properties, last value, timestamp, 

errors, timouts, interval……

• Rules – typical algebraic expressions with math/ stats/ 
logic/ string functions
• Automatic type conversion (e.g. string to float)
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Compute - model
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All nodes have exception handling and logging, e.g. divide by zero, not 
updated within time interval…

Rule: h = histogram( filter(x, -0.1, -0.1, 0.4, -0.1, -0.1), 50, 0, 10 )
Rule: msg = if( 6 < h.median < 10, “too high”, “normal” )

x
filter() histogram()

msg

if()



Function library
• Typical math/ stats/ string functions
• Standard Deviation, Histogram (auto scaling) 
• Range normalization, scaling and sampling
• FFT, Autocorrelation, Filter
• Neurons, convolutional neurons
• Probabilistic and fuzzy logic
• Application specific functions such as volume()
• Logic and bit manipulation
• Time format conversion
• Geocoordinate manipulation



Input

Run Time Compiler

Input

Compute
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GET(Almost) Zero Configuration for inputs

Auto-detect data format

Associate data with devices/sensors using source 
IP, an id within the data, MQTT topic, MODBUS 
ID…….

Accept UDP, TCP, TLS connections

Supports 
- unsolicited data input
- subscriptions to data (e.g. MQTT)
- polling to fetch data (e.g. REST API,

MODBUS, CoAP..)
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Compute
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GETStream / Flow Computing model

Builds and executes graph of 
interconnected compute nodes

Library of math, stats, string, logic, ML 
functions

Robust exception handling and 
reporting
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Output

Run Time Compiler
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Compute
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GETMinimal Configuration

- Where to send data
- Protocol/ format to use
- How often
- Security

Supports:
- REST (JSON, XML, URL..)
- MQTT Publish
- MQTT Subscribe/Publish
- Custom template
- Retrieval using GET
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Example 1
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input_tcp_port: 8898

report_name: myreport
report_enable: true
report_host: somehost.com
report_port: 80
report_type: PUT
report_encoding: JSON
report_interval: 4
report_metrics: r, s

metric: x, float, input
metric: f, float
metric: r, float
metric: s, string[128]
rule: f = fft( x, 2048, 5000 )
rule: r = f.harmonics[3] / f.harmonics[1]
rule: s = if( r > 0.3, “high 3rd harmonic”, “low 3rd harmonic” )

Receives x on port 8898 in (almost) 
any format

Calculates fft and 3rd harmonic ratio

Generate text message based on 3rd 
harmonic ratio

Every 4 seconds generates a report as 
an HTTP PUT with JSON encoded 
data



Example 2 
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mqtt_broker: broker
mqtt_broker_hostname: [host]
mqtt_broker_port: 1883
mqtt_broker_username: [username]
mqtt_broker_password: [password]

device_class: mqttdev
device_protocol: mqtt
object: timestamp, input, string[32]
object: accelX, input, float
object: accelY, input, float
object: accelV, float

device: mqttA, mqttdev, broker, [Topic string]
device: mqttB, mqttdev, broker, [Topic string]

rule: */accelV = sqrt( sqr( */accelX ) + sqr( */accelY) )

Automatically subscribes to data from 
two MQTT enabled sensors

Receives MQTT Publish messages 
resulting from the Subscribes

Associates data in messages with 
device/ object
- mqttA/accelX
- mqttA/accelY
- mqttB/accelX
- mqttB/accelY

Uses wildcard notation to replicate a 
rule for each device



Advantages
• Robust real time embedded application – designed to 

run indefinitely

• Quick and easy to program

• Device/Device Class makes it easy to handle large 
numbers of identical devices

• Less computationally efficient than compiled C/Java but 
provides more high level functions (e.g fft, acf, filter, 
histogram, neuron…) to improve efficiency

• Tested on 500MHz ARM6 through to Intel quad core 
with up to 70,000 metrics/ rules and over one million 
metrics per second
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Summary
• Very flexible, small footprint edge analytics agent
• Does not require a CS or Data Science background 

to create a real time analytics application
• Uses stream processing/ compute flow model to 

robustly handle asynchronous data
• Future work
• Support external modules to enable dedicated compute 

intensive functionality to be used from within Embiot
• Smaller version (50kbytes or less)
• Expand range of ML functionality
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