
Embiot – A Small Footprint
Embedded Edge Analytics Agent

Alan Clark
alan.d.clark@telchemy.com

IIT RTC Conference October 2020

Outline
•What problem(s) are we trying to solve?
• Embedded Stream Processing
• Architecture
• Implementation
• Practical examples

Alan Clark, IIT RTC Conference 2020

Edge Analytics
• Why integrate analytics into edge devices?

• Minimize dependency on network and Cloud resources
• Reduce volume of data sent to Cloud – less network bandwidth and

less Cloud storage
• Respond faster to detected problems – take local action and

generate local alerts
• Access to larger volume of/ more frequently sampled sensor data,

ability to correlate in real time

• Already widely established for autonomous
vehicles, smart video surveillance….
• Often implemented as dedicated applications

software or analytics libraries for Python, Java, C….

Goals for a general purpose agent
• Make it easy for the user to implement real time

analytics at the edge/ in the device
• (Ideally) should not require a CS background

• Handle multiple streams of asynchronous data,

• Should be robust and recover from bad/missing data,
reboots, disconnections

• Make it easy to (=minimal configuration) get data in /
out from a variety of sources/ formats

• Small footprint (~100-300kbytes) to allow integration
into a wider range of devices and smart sensors

Alan Clark, IIT RTC Conference 2020

Approach
• Stream processing / compute flow
• Inherently handles many asynchronous data streams

• Comprehensive function library
• Integrated runtime compiler
• Makes prototyping and experimentation quick and easy

• Range of input methods
• Listen, Polled, Subscribe-Publish….
• Ability to “figure out” what the input data format is

• Range of output methods
• Minimize configuration needed to generate periodic or

alert reports

Alan Clark, IIT RTC Conference 2020

Implementation

Run Time Compiler

Input

Compute

Reporting

Polled
Input

Exception logging

Alerts
GET APIs
MODBUS
CoAP

REST
MQTT
JSON
XML
…..

REST
MQTT
Custom

GET

Alan Clark, IIT RTC Conference 2020

300kbytes code size (inc compiler)

Embiot

Multithreaded application

Embiot language
• Declarative programming language

• Maps well into a stream processing/ flow computing model

• High level constructs for
• Servers, brokers, gateways
• Devices and Device Classes
• Reports

• Metrics – typed, supports heirarchic naming
• All metrics objects have “.” properties, last value, timestamp,

errors, timouts, interval……

• Rules – typical algebraic expressions with math/ stats/
logic/ string functions
• Automatic type conversion (e.g. string to float)

Alan Clark, IIT RTC Conference 2020

Compute - model

Alan Clark, IIT RTC Conference 2020

All nodes have exception handling and logging, e.g. divide by zero, not
updated within time interval…

Rule: h = histogram(filter(x, -0.1, -0.1, 0.4, -0.1, -0.1), 50, 0, 10)
Rule: msg = if(6 < h.median < 10, “too high”, “normal”)

x
filter() histogram()

msg

if()

Function library
• Typical math/ stats/ string functions
• Standard Deviation, Histogram (auto scaling)
• Range normalization, scaling and sampling
• FFT, Autocorrelation, Filter
• Neurons, convolutional neurons
• Probabilistic and fuzzy logic
• Application specific functions such as volume()
• Logic and bit manipulation
• Time format conversion
• Geocoordinate manipulation

Input

Run Time Compiler

Input

Compute

Reporting

Polled
Input

Exception logging

Alerts
Cloud API
MODBUS
CoAP

REST
MQTT
JSON
XML
…..

REST
MQTT
Custom

GET(Almost) Zero Configuration for inputs

Auto-detect data format

Associate data with devices/sensors using source
IP, an id within the data, MQTT topic, MODBUS
ID…….

Accept UDP, TCP, TLS connections

Supports
- unsolicited data input
- subscriptions to data (e.g. MQTT)
- polling to fetch data (e.g. REST API,

MODBUS, CoAP..)

Alan Clark, IIT RTC Conference 2020

Compute

Run Time Compiler

Input

Compute

Reporting

Polled
Input

Exception logging

Alerts
Cloud API
MODBUS
CoAP

REST
MQTT
JSON
XML
…..

REST
MQTT
Custom

GETStream / Flow Computing model

Builds and executes graph of
interconnected compute nodes

Library of math, stats, string, logic, ML
functions

Robust exception handling and
reporting

Alan Clark, IIT RTC Conference 2020

Output

Run Time Compiler

Input

Compute

Reporting

Polled
Input

Exception logging

Alerts
Cloud API
MODBUS
CoAP

REST
MQTT
JSON
XML
…..

REST
MQTT
Custom

GETMinimal Configuration

- Where to send data
- Protocol/ format to use
- How often
- Security

Supports:
- REST (JSON, XML, URL..)
- MQTT Publish
- MQTT Subscribe/Publish
- Custom template
- Retrieval using GET

Alan Clark, IIT RTC Conference 2020

Example 1

Alan Clark, IIT RTC Conference 2020

input_tcp_port: 8898

report_name: myreport
report_enable: true
report_host: somehost.com
report_port: 80
report_type: PUT
report_encoding: JSON
report_interval: 4
report_metrics: r, s

metric: x, float, input
metric: f, float
metric: r, float
metric: s, string[128]
rule: f = fft(x, 2048, 5000)
rule: r = f.harmonics[3] / f.harmonics[1]
rule: s = if(r > 0.3, “high 3rd harmonic”, “low 3rd harmonic”)

Receives x on port 8898 in (almost)
any format

Calculates fft and 3rd harmonic ratio

Generate text message based on 3rd
harmonic ratio

Every 4 seconds generates a report as
an HTTP PUT with JSON encoded
data

Example 2

Alan Clark, IIT RTC Conference 2020

mqtt_broker: broker
mqtt_broker_hostname: [host]
mqtt_broker_port: 1883
mqtt_broker_username: [username]
mqtt_broker_password: [password]

device_class: mqttdev
device_protocol: mqtt
object: timestamp, input, string[32]
object: accelX, input, float
object: accelY, input, float
object: accelV, float

device: mqttA, mqttdev, broker, [Topic string]
device: mqttB, mqttdev, broker, [Topic string]

rule: */accelV = sqrt(sqr(*/accelX) + sqr(*/accelY))

Automatically subscribes to data from
two MQTT enabled sensors

Receives MQTT Publish messages
resulting from the Subscribes

Associates data in messages with
device/ object
- mqttA/accelX
- mqttA/accelY
- mqttB/accelX
- mqttB/accelY

Uses wildcard notation to replicate a
rule for each device

Advantages
• Robust real time embedded application – designed to

run indefinitely

• Quick and easy to program

• Device/Device Class makes it easy to handle large
numbers of identical devices

• Less computationally efficient than compiled C/Java but
provides more high level functions (e.g fft, acf, filter,
histogram, neuron…) to improve efficiency

• Tested on 500MHz ARM6 through to Intel quad core
with up to 70,000 metrics/ rules and over one million
metrics per second

Alan Clark, IIT RTC Conference 2020

Summary
• Very flexible, small footprint edge analytics agent
• Does not require a CS or Data Science background

to create a real time analytics application
• Uses stream processing/ compute flow model to

robustly handle asynchronous data
• Future work
• Support external modules to enable dedicated compute

intensive functionality to be used from within Embiot
• Smaller version (50kbytes or less)
• Expand range of ML functionality

Alan Clark, IIT RTC Conference 2020

