
Can SFUs and MCUs be friends?

Lorenzo Miniero
@elminiero

IIT Real-Time Communication 2020 – WebRTC Track
October 14th 2020, Chicago, IL, USA

https://twitter.com/elminiero


A few words about me

Lorenzo Miniero
• Ph.D @ UniNA
• Chairman @ Meetecho
• Main author of Janus®

Contacts and info
• lorenzo@meetecho.com
• https://twitter.com/elminiero
• https://www.slideshare.net/LorenzoMiniero
• https://soundcloud.com/lminiero

lorenzo@meetecho.com
https://twitter.com/elminiero
https://www.slideshare.net/LorenzoMiniero
https://soundcloud.com/lminiero


Fun fact: the first RTC server I ever wrote was an MCU



Fun fact: the first RTC server I ever wrote was an MCU



Fun fact: the first RTC server I ever wrote was an MCU



Fun fact: the first RTC server I ever wrote was an MCU



WebRTC topologies: full-mesh

https://webrtchacks.com/webrtc-beyond-one-one/

https://webrtchacks.com/webrtc-beyond-one-one/


WebRTC topologies: MCU (Multipoint Control Unit)

https://webrtchacks.com/webrtc-beyond-one-one/

https://webrtchacks.com/webrtc-beyond-one-one/


WebRTC topologies: SFU (Selective Forwarding Unit)

https://webrtchacks.com/webrtc-beyond-one-one/

https://webrtchacks.com/webrtc-beyond-one-one/


How most “SFU vs. MCU” discussions look like



A few words on MCUs

• Been around for a long time (e.g., legacy SIP/H.323 conferencing systems)
• To simplify, mixes multiple streams into one

• Multiple participants send their streams to the MCU
• MCU decodes each stream and mixes/composes them
• Participants get a single encoded stream back

Some Pros
• Limited/consistent bandwidth usage
• Good for constrained endpoints
• Can compose/show many streams
• Endpoints can use different codecs
• Easier “legacy” interoperability

Some Cons
• CPU heavy on server (expensive)
• Needs smarter RTP buffering
• Can’t really use Simulcast/SVC
• Little flexibility on UI
• Can’t do end-to-end encryption



A few words on MCUs

• Been around for a long time (e.g., legacy SIP/H.323 conferencing systems)
• To simplify, mixes multiple streams into one

• Multiple participants send their streams to the MCU
• MCU decodes each stream and mixes/composes them
• Participants get a single encoded stream back

Some Pros
• Limited/consistent bandwidth usage
• Good for constrained endpoints
• Can compose/show many streams
• Endpoints can use different codecs
• Easier “legacy” interoperability

Some Cons
• CPU heavy on server (expensive)
• Needs smarter RTP buffering
• Can’t really use Simulcast/SVC
• Little flexibility on UI
• Can’t do end-to-end encryption



A few words on MCUs

• Been around for a long time (e.g., legacy SIP/H.323 conferencing systems)
• To simplify, mixes multiple streams into one

• Multiple participants send their streams to the MCU
• MCU decodes each stream and mixes/composes them
• Participants get a single encoded stream back

Some Pros
• Limited/consistent bandwidth usage
• Good for constrained endpoints
• Can compose/show many streams
• Endpoints can use different codecs
• Easier “legacy” interoperability

Some Cons
• CPU heavy on server (expensive)
• Needs smarter RTP buffering
• Can’t really use Simulcast/SVC
• Little flexibility on UI
• Can’t do end-to-end encryption



A few words on MCUs

• Been around for a long time (e.g., legacy SIP/H.323 conferencing systems)
• To simplify, mixes multiple streams into one

• Multiple participants send their streams to the MCU
• MCU decodes each stream and mixes/composes them
• Participants get a single encoded stream back

Some Pros
• Limited/consistent bandwidth usage
• Good for constrained endpoints
• Can compose/show many streams
• Endpoints can use different codecs
• Easier “legacy” interoperability

Some Cons
• CPU heavy on server (expensive)
• Needs smarter RTP buffering
• Can’t really use Simulcast/SVC
• Little flexibility on UI
• Can’t do end-to-end encryption



A few words on SFUs

• Relatively recent, and more widespread thanks to WebRTC
• No mixing performed, packets are just relayed

• Multiple participants send their streams to the SFU
• Streams forwarded separately (and optionally) to other subscribers
• No transcoding is performed on the media path

Some Pros
• Much more lightweight on CPU
• Feedback between users preserved
• Can take advantage of Simulcast/SVC
• Allows for end-to-end encryption
• Very flexible on UI side

Some Cons
• Higher bandwidth usage (expensive)
• Clients have to decode/render a lot
• They also need to support same codecs
• Harder to integrate with legacy systems



A few words on SFUs

• Relatively recent, and more widespread thanks to WebRTC
• No mixing performed, packets are just relayed

• Multiple participants send their streams to the SFU
• Streams forwarded separately (and optionally) to other subscribers
• No transcoding is performed on the media path

Some Pros
• Much more lightweight on CPU
• Feedback between users preserved
• Can take advantage of Simulcast/SVC
• Allows for end-to-end encryption
• Very flexible on UI side

Some Cons
• Higher bandwidth usage (expensive)
• Clients have to decode/render a lot
• They also need to support same codecs
• Harder to integrate with legacy systems



A few words on SFUs

• Relatively recent, and more widespread thanks to WebRTC
• No mixing performed, packets are just relayed

• Multiple participants send their streams to the SFU
• Streams forwarded separately (and optionally) to other subscribers
• No transcoding is performed on the media path

Some Pros
• Much more lightweight on CPU
• Feedback between users preserved
• Can take advantage of Simulcast/SVC
• Allows for end-to-end encryption
• Very flexible on UI side

Some Cons
• Higher bandwidth usage (expensive)
• Clients have to decode/render a lot
• They also need to support same codecs
• Harder to integrate with legacy systems



A few words on SFUs

• Relatively recent, and more widespread thanks to WebRTC
• No mixing performed, packets are just relayed

• Multiple participants send their streams to the SFU
• Streams forwarded separately (and optionally) to other subscribers
• No transcoding is performed on the media path

Some Pros
• Much more lightweight on CPU
• Feedback between users preserved
• Can take advantage of Simulcast/SVC
• Allows for end-to-end encryption
• Very flexible on UI side

Some Cons
• Higher bandwidth usage (expensive)
• Clients have to decode/render a lot
• They also need to support same codecs
• Harder to integrate with legacy systems



So they’re indeed very different...



But... can’t SFUs and MCUs be friends?



Audio MCU + Video SFU

• What we usually call the “hybrid approach”
• Audio from participants is mixed (MCU)
• Video from participants is relayed (SFU)

• Mixing only audio has a few advantages

1 Audiomixing lighter than Videomixing, so relative impact
2 Participants with constraints (CPU/BW) can stick to audio only
3 In case audio is SIP-based, easy to hook to PSTN
4 Decoupling audio from video allows for more options (e.g., interpreters)
5 Easy to distribute/broadcast (audio already mixed)

• SFU mode keeps flexibility for video
• Easy to subscribe to a subset of participants, or none at all



Audio MCU + Video SFU

• What we usually call the “hybrid approach”
• Audio from participants is mixed (MCU)
• Video from participants is relayed (SFU)

• Mixing only audio has a few advantages

1 Audiomixing lighter than Videomixing, so relative impact
2 Participants with constraints (CPU/BW) can stick to audio only
3 In case audio is SIP-based, easy to hook to PSTN
4 Decoupling audio from video allows for more options (e.g., interpreters)
5 Easy to distribute/broadcast (audio already mixed)

• SFU mode keeps flexibility for video
• Easy to subscribe to a subset of participants, or none at all



Audio MCU + Video SFU

• What we usually call the “hybrid approach”
• Audio from participants is mixed (MCU)
• Video from participants is relayed (SFU)

• Mixing only audio has a few advantages

1 Audiomixing lighter than Videomixing, so relative impact
2 Participants with constraints (CPU/BW) can stick to audio only
3 In case audio is SIP-based, easy to hook to PSTN
4 Decoupling audio from video allows for more options (e.g., interpreters)
5 Easy to distribute/broadcast (audio already mixed)

• SFU mode keeps flexibility for video
• Easy to subscribe to a subset of participants, or none at all



Audio MCU + Video SFU

https://commcon.xyz/session/turning-live-events-to-virtual-with-janus

https://commcon.xyz/session/turning-live-events-to-virtual-with-janus


Live Recording



Live Recording



Broadcasting to a CDN



A practical example: Meetecho @ IETF 108



A practical example: Meetecho @ IETF 108

https://www.youtube.com/watch?v=DV0q9s94RL8

https://www.youtube.com/watch?v=DV0q9s94RL8


A practical example: Meetecho @ IETF 108

https://www.youtube.com/watch?v=DV0q9s94RL8

https://www.youtube.com/watch?v=DV0q9s94RL8


A practical example: Meetecho @ IETF 108

https://www.youtube.com/watch?v=DV0q9s94RL8

https://www.youtube.com/watch?v=DV0q9s94RL8


A practical example: Meetecho @ IETF 108

https://www.youtube.com/watch?v=DV0q9s94RL8

https://www.youtube.com/watch?v=DV0q9s94RL8


Integrating with (legacy) conferencing systems



Integrating with (legacy) conferencing systems



Integrating with (legacy) conferencing systems



A few practical examples



A few practical examples

http://www.januscon.it/2019/talk.php?t=nexmo (Giacomo Vacca)

http://www.januscon.it/2019/talk.php?t=nexmo


A few practical examples

http://www.januscon.it/2019/talk.php?t=mojolingo (Luca Pradovera)

http://www.januscon.it/2019/talk.php?t=mojolingo


Supporting less powerful devices



What about using browsers as an MCU?

• Browsers often already used that way for recording/broadcasting
• e.g., headless browser joining as participant
• External tool (e.g., ffmpeg) captures audio/video from browser

• Canvas (and WebRTC) allow for a more integrated functionality, though
• e.g., composition done on a canvas object (basically an MCU!)

• canvas.captureStream() to turn it into a WebRTC stream
• ...and, why not, WebAudio to do audio too!

• Used by companies like Streamyard and Stage TEN for broadcasting

An ugly canvas+WebRTC demo
• https://janus.conf.meetecho.com/canvas

https://janus.conf.meetecho.com/canvas


What about using browsers as an MCU?

• Browsers often already used that way for recording/broadcasting
• e.g., headless browser joining as participant
• External tool (e.g., ffmpeg) captures audio/video from browser

• Canvas (and WebRTC) allow for a more integrated functionality, though
• e.g., composition done on a canvas object (basically an MCU!)

• canvas.captureStream() to turn it into a WebRTC stream
• ...and, why not, WebAudio to do audio too!

• Used by companies like Streamyard and Stage TEN for broadcasting

An ugly canvas+WebRTC demo
• https://janus.conf.meetecho.com/canvas

https://janus.conf.meetecho.com/canvas


What about using browsers as an MCU?

• Browsers often already used that way for recording/broadcasting
• e.g., headless browser joining as participant
• External tool (e.g., ffmpeg) captures audio/video from browser

• Canvas (and WebRTC) allow for a more integrated functionality, though
• e.g., composition done on a canvas object (basically an MCU!)

• canvas.captureStream() to turn it into a WebRTC stream
• ...and, why not, WebAudio to do audio too!

• Used by companies like Streamyard and Stage TEN for broadcasting

An ugly canvas+WebRTC demo
• https://janus.conf.meetecho.com/canvas

https://janus.conf.meetecho.com/canvas


What about using browsers as an MCU?

• Browsers often already used that way for recording/broadcasting
• e.g., headless browser joining as participant
• External tool (e.g., ffmpeg) captures audio/video from browser

• Canvas (and WebRTC) allow for a more integrated functionality, though
• e.g., composition done on a canvas object (basically an MCU!)

• canvas.captureStream() to turn it into a WebRTC stream
• ...and, why not, WebAudio to do audio too!

• Used by companies like Streamyard and Stage TEN for broadcasting

An ugly canvas+WebRTC demo
• https://janus.conf.meetecho.com/canvas

https://janus.conf.meetecho.com/canvas


What about using browsers as an MCU?

• Browsers often already used that way for recording/broadcasting
• e.g., headless browser joining as participant
• External tool (e.g., ffmpeg) captures audio/video from browser

• Canvas (and WebRTC) allow for a more integrated functionality, though
• e.g., composition done on a canvas object (basically an MCU!)

• canvas.captureStream() to turn it into a WebRTC stream
• ...and, why not, WebAudio to do audio too!

• Used by companies like Streamyard and Stage TEN for broadcasting

An ugly canvas+WebRTC demo
• https://janus.conf.meetecho.com/canvas

https://janus.conf.meetecho.com/canvas


What about using browsers as an MCU?

• Browsers often already used that way for recording/broadcasting
• e.g., headless browser joining as participant
• External tool (e.g., ffmpeg) captures audio/video from browser

• Canvas (and WebRTC) allow for a more integrated functionality, though
• e.g., composition done on a canvas object (basically an MCU!)

• canvas.captureStream() to turn it into a WebRTC stream
• ...and, why not, WebAudio to do audio too!

• Used by companies like Streamyard and Stage TEN for broadcasting

An ugly canvas+WebRTC demo
• https://janus.conf.meetecho.com/canvas

https://janus.conf.meetecho.com/canvas


Masashi Ganeko’s MCU in a Browser

https://speakerdeck.com/mganeko/build-webrtc-mcu-on-browser

https://speakerdeck.com/mganeko/build-webrtc-mcu-on-browser


Masashi Ganeko’s MCU in a Browser

https://speakerdeck.com/mganeko/build-webrtc-mcu-on-browser

https://speakerdeck.com/mganeko/build-webrtc-mcu-on-browser


Tim Panton’s Book Club!

https://rendezvous.zone

https://rendezvous.zone


Tim Panton’s Book Club!

https://rendezvous.zone

https://rendezvous.zone


Thanks! Questions? Comments?

Get in touch!
• https://twitter.com/elminiero
• https://twitter.com/meetecho
• https://www.meetecho.com

https://twitter.com/elminiero
https://twitter.com/meetecho
https://www.meetecho.com

