
Voice for the Voiceless: Building an
Open Source and Affordable TTS
Device
By Travis Smith
Professor Vasilios “Billy” Pappademetriou

Presented by Travis Smith

About Travis Smith (Presenter)

● 5th year Co-terminal Graduate Student at IIT
○ Masters in Cyber Forensics and Security
○ Bachelors in Computer Information Systems
○ Minor in Information Security
○ Graduating May 2021

● Undergraduate Research
○ Developed working model for this project.
○ Publishing Paper in progress
○ Currently research project: Using AI for fighting

disinformation online
● Undergraduate Research Manager

○ Supervised other Grad/Undergrad students
○ Current Research project: Mesh Networking

and alternative communication methods
○ Featured in and syndicated via IIT news

● Platform Engineer at Vail Systems
○ Recognized me from this TTS research
○ Led to Summer internship
○ Offered Full time opportunity
○ Working on developing automation tools for

our DevOps pipeline
● Course Developer and Teacher Assistant

○ Developed Intro to Go Programming language
class with Professor Billy

○ Co-Taught the class Summer 2020
○ Currently Teacher Assistant for Professor Billy

● President of the HAM Radio and Research
Club
○ KD9-NZT
○ Technician License

About Professor Billy

● Professor Vasilios Pappademetriou
○ Known by everyone as “Professor Billy”

● Education
○ Master of Information Technology and

Management - Illinois Tech
○ Bachelor of Information Technology and

Management - Illinois Tech
● Academic Teaching Experience

○ College of DuPage -- 2015 - Present
■ CIS Adjunct Faculty

○ Illinois Tech -- 2016 - Present
■ ITM Adjunct Industry Associate

Professor
■ Undergraduate Research
■ Ham Radio Club Advisor

Click on image to open CV

http://professorbilly.com/billy/CV/Pappademetriou_CV_Perm.pdf
http://professorbilly.com/billy/CV/Pappademetriou_CV_Perm.pdf

About the Research ● Conducted in an Independent Research
class
○ ITM department (ITM-497)
○ Spring 2019
○ Co-Authored and supervised by Professor Billy

● Focused on bringing TTS technology to
the disadvantaged
○ Device is a proof of concept
○ Accomplished via using open source

components and software
○ Using low-cost and readily available hardware
○ Writing the software from scratch
○ Designing the device to work offline
○ Goal of emulating the user experience of existing

expensive TTS alternatives

● Presentation will be regarding
○ Background of Speech-Generating Devices
○ Our TTS Device design decisions and

methodologies
○ Overview of the hardware/software
○ Plans for the future

Background: Speech Generating Devices

● What are they?
○ Any device that assists a person to verbally

communicate
■ Loss of hearing, speech, or voice

● What kinds of SGD devices exist?
○ Assistive Listening Devices
○ Augmentative and Alternative Communication

Devices (AAC)
■ What our TTS device is classified as

○ Alerting Devices
● What types of AAC devices exist?

○ Unaided
○ Low Tech
○ High Tech

Problems with Commercial AAC Devices

● The cost
○ Non-dedicated vs Dedicated devices

■ Dedicated device shown to the right costs
$6000 USD

■ Non-dedicated IPad with similar software costs
< $1000

■ Our open source AAC device < $150
● Lack of updates and features

○ Closed source software
○ At the mercy of developers

■ Application updates
■ Bug fixes
■ Supporting newer device hardware and OS

versions
● Upgradability and maintainability

○ Pay manufacturer
○ Replace the device

● Internet connection requirement
○ User cannot afford
○ Not available to the user

Design
Requirements for
our AAC System

● Low cost
○ Half the cost of the cheapest iPad (without

software)
○ Includes hardware and software

● Portable
○ Cannot be much larger than a tablet

● Configurable
○ Created using off the shelf components
○ Easily upgradable and maintainable
○ Customizable to each user

● Open Source
○ Customizable and maintainable by the AAC

community
○ Avoids software abandonment

● Function without an internet connection
○ Improves access
○ Limits speech synthesis options

■ Could be added as an optional feature

Hardware Design

Main Compute Device

● Raspberry Pi 3 A+
○ Small fully capable computer
○ Power and Portability

● Specifications
○ 64 bit quad-core 1.4GHz Arm Processor
○ 512MB Memory
○ AC Wireless
○ Bluetooth
○ Audio/Video output

● Price
○ $30 USD

● Why was it chosen?

Touchscreen

● Official Raspberry Pi 7” Touchscreen
Display

● Specifications
○ 800 x 480 Resolution
○ 10 Finger Capacitive Touch
○ Powered and driven by conversion

board
○ Easy installation

● Price
○ $30 USD

● Why was it chosen?

Power Solution

● 3.7V 4000mAH battery pack
○ USB conversion board
○ Connects to Raspberry Pi via

conversion board
● Price

○ $24 USD
● Why was it chosen?

Case

● SmartPi Touch 2
● Bulky but durable case
● Comes with removable stand
● Price

○ $30 USD
● Why was it chosen?

Software Design

Software Design: Operating System Choice

● Destined to be a flavour of Linux
● Raspbian OS

○ Debian-based
○ Officially provided and supported by the

Raspberry Pi foundation
○ Licensed using free and open source software

licences
○ Comes with tools and driver’s pre-installed

■ Python
● Other considerations

○ Ubuntu
○ Centos
○ TinyCore

Software Design: Programming Language

● Language was chosen with these
considerations
○ Offline TTS libraries
○ GUI libraries
○ Ease of use and popular with Raspberry Pi

■ Maximize contributions and availability
● Python met these requirements

○ Pyttsx3 offline TTS
○ Multiple great GUI libraries

■ Tkinter
■ PyQT
■ Wx-Python

○ Arguably most beginner friendly language
○ Most popular for Raspberry Pi projects

● Comes pre-installed with Raspbian

Software Design: Text to Speech Engines

● Offline TTS Engines
○ TTS software is hosted locally on client device
○ Speech synthesis computed locally
○ No internet connection required

● Pro:
○ Self sustaining

■ Not reliant on internet provider or
speech synthesis service

○ No subscription required
○ Ideal for our TTS use-case

● Cons:
○ Voice options can be limited
○ Manual updates to engine
○ Limited by power of local device

● Online TTS Engines
○ Text is sent over the internet to TTS service
○ Service uses powerful backend infrastructure

to perform the speech synthesis
○ Sends audio result back to client

● Pro:
○ Synthesized voice sounds more human
○ More voice options

■ Age, Sex, Ethnicity
■ Custom voices

○ Not limited by compute power of client device
● Con:

○ Requires an internet connection
○ Some require a subscription
○ Service only possible if provider is online

Software Design: Text to Speech Engine Choice

● Pyttsx3
○ Works completely offline
○ Uses OS included TTS engines

■ Sapi5
● Windows

■ Nsss
● MacOS

■ Espeak
● Linux

○ Voice customization
■ Speed/Rate
■ Volume
■ Voice type

○ Easy and intuitive to use

Software Design: Pyttsx3

● Raspbian
○ Espeak TTS engine comes pre-installed
○ For debian based distributions without Espeak,

it can be installed easily using the apt package
manager

● The example to the right showcases the
different voice configurations

● For our TTS project, pyttsx3 was used with
default configurations for Espeak

● The GUI buttons call pyttsx3 speak methods
to perform the speech synthesis on the fly
○ Saving to a file was not used

Software Design: Graphical User Interface

● Design considerations
○ Computational cost

■ Raspberry Pi limitations
● CPU/Memory
● Battery life

○ Simple and intuitive for AAC applications
■ Don’t want to confused users
■ No need for advanced menus and

options
■ Touchscreen friendly

● GUI libraries examined
○ PyQt
○ Tkinter
○ wx-Python
○ PyGTK

Software Design: Graphical User Interface Choice

● Tkinter
○ Ideal for simple designs and applications
○ Basic functionality

■ Tabs
■ Buttons
■ Screens

○ Our AAC application had a few different
components
■ Sentence builder
■ Speak button
■ Speech Category tabs and screens

● Word buttons that populate
sentence builder

■ Resizable
○ Tkinter allowed these to be built and displayed

simply

Front View of the Device

Video Demonstration

https://docs.google.com/file/d/1RxCD6ye9xTgyDisCWp61fz4DivpsHmCI/preview

What can be improved?

● Restrictions on the device mainly come from
the two requirements
○ Off the shelf hardware components
○ Offline functionality

● Off the shelf hardware
○ Readily available, but not as customizable

■ Shape, size, color, etc
○ The case is the main target here

■ 3D printing alternative
● Cost less
● Reduce size of device

■ Could be more difficult to mass
produce

● Offline functionality
○ Improves access to the device
○ Vasly decreases TTS synthesis quality and

options
○ Alternative would be a togglable engine option

■ User can choose online or offline option
depending on needs

■ Provide users with access to internet
an experience closer to more expensive
AAC devices

● Raspberry Pi’s are very customizable
○ Our implementation is a proof of concept

■ Showcases that medical devices can
be emulated with cheaper, DIY
alternatives to increase access

○ Different screens, cases, and software can be
used to achieve desired target and results

Future Plans

● Hardware experimentation
○ Make the device more compact

■ Raspberry Pi zero
■ Smaller touch-screens
■ Custom cases

● Software expansion
○ User customizability
○ Offline and online functionality

■ Multiple TTS engines
○ GUI improvements

■ Images and words on the buttons
■ Users add their own buttons

● Examples on the right showcase how
customizable Raspberry Pi’s can be
○ Not a one size fits all solution
○ Exciting for the field of AAC devices

Thank you!

