WISH-a-WHIP:
WebRTC ingest for broadcasting

Lorenzo Miniero
@elminiero

[IT Real-Time Communication 2021 — WebRTC Track
October 13t 2021, Chicago, IL, USA

https://twitter.com/elminiero

.M. A few words about me

Lorenzo Miniero
e Ph.D @ UniNA
e Chairman @ Meetecho
* Main author of Janus®

Contacts and info

® |orenzo@meetecho.com
https://twitter.com/elminiero
https://www.slideshare.net/LorenzoMiniero
https://soundcloud.com/Iminiero
https://Iminiero.bandcamp.com

lorenzo@meetecho.com
https://twitter.com/elminiero
https://www.slideshare.net/LorenzoMiniero
https://soundcloud.com/lminiero
https://lminiero.bandcamp.com

.H. There would be no WHIP without Dr. Alex ®

Janus client-side
Alex Gouaillard

WEPRTS RALRSTAR
ASIAN TOUR

B

.M‘ Traditional broadcasting

Source

Streaming server

— =

LS/DAY

/
HLS/DASH > D

i‘i Why not WebRTC?

e Traditional broadcasting efficient but higher latency

* At best (live), delay will typically be in the range of a few seconds

https://webrtcbydralex.com/index.php/2020/04/14/

i‘i Why not WebRTC?

e Traditional broadcasting efficient but higher latency
* At best (live), delay will typically be in the range of a few seconds
e WebRTC natively conceived for very low latency, instead

* Born for conversational audio/video/data
® Can be (and often is) easily used for monodirectional streaming as well

https://webrtcbydralex.com/index.php/2020/04/14/

.l‘i Why not WebRTC?

e Traditional broadcasting efficient but higher latency

* At best (live), delay will typically be in the range of a few seconds
e WebRTC natively conceived for very low latency, instead

* Born for conversational audio/video/data

® Can be (and often is) easily used for monodirectional streaming as well
e Strangely not really considered by the industry up until recently, though

* Topic of my Ph.D years ago (“Streaming Of Large scale Events over Internet cLouds”)
¢ Clearing the industry FUD: https://webrtcbydralex.com/index.php/2020/04/14/

https://webrtcbydralex.com/index.php/2020/04/14/

.l‘i Why not WebRTC?

Traditional broadcasting efficient but higher latency

* At best (live), delay will typically be in the range of a few seconds

WebRTC natively conceived for very low latency, instead

* Born for conversational audio/video/data
® Can be (and often is) easily used for monodirectional streaming as well

Strangely not really considered by the industry up until recently, though

* Topic of my Ph.D years ago (“Streaming Of Large scale Events over Internet cLouds”)
® Clearing the industry FUD: https://webrtcbydralex.com/index.php/2020/04/14/

Tooling an important aspect to foster WebRTC adoption, here

® e.g., a standard way to send media, and tools a la OBS

https://webrtcbydralex.com/index.php/2020/04/14/

.M. Making WebRTC ingestion easy: WHIP!

Web@RTC

https://www.meetecho.com/blog/wh|p—1anus/ (September, 2020)

https://www.meetecho.com/blog/whip-janus/

.M. A new Working Group in the IETF...

WebRTC Ingest Signaling over HTTPS (wish)

About Documents ~ Meetings ~ History ~Photos Email expansions Listarchive» Tools »

w6 Name WebRTC Ingest Signaling over HTTPS

Acronym wish
Area Applications and Real-Time Area (art)
State Active

Charter charter-ietf-wish-01
Dependencies Document dependency graph (SVG)
Additional - Github
Resources

Personnel Chairs Nils Ohlmeier
Sean Turner 2
Area Director Murray Kucherawy &
Mailing list Address wish@ietf.org
To subscribe https://www.ietf.org/mailman/listinfo/wish
Archive https;/mailarchive.ietf.org/arch/browse/wish,
Jabber chat Room address xmpp:wish@jabber.ietf.org?join

Logs httpsz//jabber.ietf.org/logs wish,

Charter for Working Group

‘The WISH working group is chartered to specify a simple, extensible, HTTPS-based signaling protocol to establish one-way WebRTC-based audiovisual sessions between broadcasting tools and real-time media broadcast networks.

https://datatracker.ietf.org/wg/wish/about/

https://datatracker.ietf.org/wg/wish/about/

Workgroup: wish
Internet-Draft draftietf-wish-whip-00
Published: 22 August 2021

Intended Status: Standards Track

Expires: 23 February 2022

Authors: S Murillo A Gouaillard

CoSMo Software CoSMo Software

WebRTC-HTTP ingestion protocol (WHIP)

Abstract

While WebRTC has been very successful in a wide range of scenarios, its adoption in the
broadcasting/streaming industry is lagging behind. Currently there is no standard protocol (like SIP or RTSP)
designed for ingesting media In a streaming service, and content providers still rely heavily on protocols like
RTMP for it

These protocols are much older than webrtc and lack by defaut some important security and resilience
features provided by webrtc with minimal delay.

The media codecs used In older protocols do not always match those being used In WebRTC, mandating
transcoding on the ingest node, introducing delay and degrading media quality. This transcoding step is
always present In traditional streaming to support e.g. ABR, and comes at no cost. However webrtc

implements client-side ABR, also called Network-Aware Encoding by e.g. Huavision, by means of simulcast and

SVC codecs, which otherwise alleviate the need for server-side transcoding. Content protection and Privacy
Enhancement can be achieved with End-to-End Encryption, which preclude any server-side media
processing.

This document proposes a simple HTTP based protocol that will allow WebRTC endpoints to ingest content
into streaming services and/or CDNs to fil this gap and facilitate deployment.

... and a new draft for the WHIP specification!

Table of Contents

Introduction
2. Terminology

3. Overview

4. Protocol Operation

4.1. ICE and NAT support

4.2. Webrtc constraints

4.3. Load balancing and redirections

4.4. STUN/TURN server configuration
4.5. Authentication and authorization
4.6. Simulcast and scalable video coding

4.7. Protocol extensions

Security Considerations
6. TANA Considerations
7. Acknowledgements
8. Normative References

Authors' Addresses

https://www.ietf.org/archive/id/draft-ietf-wish-whip-00.html

https://www.ietf.org/archive/id/draft-ietf-wish-whip-00.html

i‘i WebRTC-HTTP ingestion protocol (WHIP)

* HTTP-based signalling to create sendonly PeerConnections

e HTTP POST to send SDP offer, and get an SDP answer in the response
e Teardown of sessions using HTTP DELETE

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html

i‘i WebRTC-HTTP ingestion protocol (WHIP)

e HTTP-based signalling to create sendonly PeerConnections
e HTTP POST to send SDP offer, and get an SDP answer in the response
e Teardown of sessions using HTTP DELETE

¢ Authentication and authorization via Bearer tokens

¢ https://www.rfc-editor.org/rfc/rfc6750.html

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html

i‘i WebRTC-HTTP ingestion protocol (WHIP)

e HTTP-based signalling to create sendonly PeerConnections
® HTTP POST to send SDP offer, and get an SDP answer in the response
e Teardown of sessions using HTTP DELETE
* Authentication and authorization via Bearer tokens
¢ https://www.rfc-editor.org/rfc/rfc6750.html
e Trickle and ICE restart via HTTP PATCH and SDP fragments
* https://www.rfc-editor.org/rfc/rfc8840.html

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html

i‘i WebRTC-HTTP ingestion protocol (WHIP)

HTTP-based signalling to create sendonly PeerConnections

e HTTP POST to send SDP offer, and get an SDP answer in the response
e Teardown of sessions using HTTP DELETE

Authentication and authorization via Bearer tokens

¢ https://www.rfc-editor.org/rfc/rfc6750.html

Trickle and ICE restart via HTTP PATCH and SDP fragments
* https://www.rfc-editor.org/rfc/rfc8840.html

Everything else is your usual WebRTC!
¢ |CE, DTLS, etc.

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html

.M. A few sequence diagrams

WebRTC Producer 'WHIP Endpoint WHIP Resource

HTTP POST (Bearer token + SDP Offer)

Validate token

201 Accepted (Resource Location + SDP answer)

Resolve Location to url of Media Resource

HTTP PATCH (trickle)

204 No Content

WebRTC Producer WHIP Endpoint WHIP Resource

.M. A few sequence diagrams

WebRTC Producer WHIP Endpoint 'WHIP Resource

HTTP POST (Bearer token + SDP Offer)

201 Accepted (Resource Location + SDP answer)

PeerConnection setup

RTP flow

A 4

perform an ICE restart

HTTP PATCH (new ICE credentials)

react to ICE restart

200 OK (new ICE credentials)

A

WebRTC Producer WHIP Endpoint 'WHIP Resource

.M. A few sequence diagrams

WebRTC Producer WHIP Endpoint WHIP Resource

HTTP POST (Bearer token + SDP Offer)

201 Accepted (Resource Location + SDP answer)

PeerConnection setup

RTP flow

v

media flows

HTTP DELETE

P

get rid of PeerConnection

200 OK

WebRTC Producer WHIP Endpoint WHIF Resource

.M. A WHIP server based on Janus

e Janus is a popular WebRTC server, so good option for WHIP
* |timplements its own JSON-based API, though (Janus API)

https://github.com/lminiero/simple-whip-server/

.M' A WHIP server based on Janus

e Janus is a popular WebRTC server, so good option for WHIP
* |timplements its own JSON-based API, though (Janus API)

e Simple (and transparent) solution: basic API translator in front of Janus

* WHIP API maps quite simply to set of Janus API primitives
* No need to change anything in the WebRTC stack

https://github.com/lminiero/simple-whip-server/

.M' A WHIP server based on Janus

e Janus is a popular WebRTC server, so good option for WHIP
* |timplements its own JSON-based API, though (Janus API)

e Simple (and transparent) solution: basic API translator in front of Janus
* WHIP API maps quite simply to set of Janus API primitives
* No need to change anything in the WebRTC stack

¢ Implemented simple prototype using node.js and Express

* REST server that implements the WHIP API, and talks to Janus accordingly
* Only takes care of ingest: distribution out of scope (e.g., via SOLEIL)

https://github.com/lminiero/simple-whip-server/

.M. A WHIP server based on Janus

e Janus is a popular WebRTC server, so good option for WHIP
* |timplements its own JSON-based API, though (Janus API)

e Simple (and transparent) solution: basic API translator in front of Janus
* WHIP API maps quite simply to set of Janus API primitives
* No need to change anything in the WebRTC stack

¢ Implemented simple prototype using node.js and Express

* REST server that implements the WHIP API, and talks to Janus accordingly
* Only takes care of ingest: distribution out of scope (e.g., via SOLEIL)

Simple WHIP Server

https://github.com/Iminiero/simple-whip-server/

https://github.com/lminiero/simple-whip-server/

.M‘ Distributing a WHIP Janus stream: SOLEIL

.M. Distributing a WHIP Janus stream: SOLEIL

.H. Mapping WHIP interactions to the Janus API

WebRTC Producer WHIP Server Janus

HTTP POST /endpoint (SDP Offer)

validate token

aftach handle (VideoRoom)

success

joinandconfigure (SDP Offer)

ack

event (joined, SDP Answer)

add Location header to response for /resource

201 Accepted (SDP answer)

address /resource from now on

‘WebRTC Producer WHIP Server Janus

.H. Mapping WHIP interactions to the Janus API

WebRTC Producer WHIP Server Janus

HTTP PATCH Jresource (trickle)

find handle associated to /resource

trickle handle N
" success
| 204 No Content
................................... 5 e R
e resesareensgeesan ICEresponse
................................... el N
RTP flow |

WebRTC Producer WHIP Server Janus

.H. Mapping WHIP interactions to the Janus API

WebRTC Producer WHIP Server Janus

HTTP PATCH fresource (new ufrag/pwd)

new credentials --> ICE restart, generate SDP

find handle associated to /resource

configure (SDP Offer, restart)

ack

event (configured, SDP Answer)

L 200 OK (new ulraglpwd))

WebRTC Producer WHIP Server Janus

.M. Mapping WHIP interactions to the Janus API

WebRTC Producer WHIP Server Janus

HTTP DELETE /resource

cleanup endpoint

find handle associated to /resource

detach handle

get rid of PeerConnection

200 OK

WebRTC Producer WHIP Server Janus

o0 . : .
H Mapping WHIP interactions to the Janus API

PeerConnection is over

event: hangup (DTLS alert)

*

cleanup endpoint

detach handle

success

F 3

WebRTC Producer WHIP Server Janus

o0
Ei Simple WHIP Server in action ©

B WHIP server

File

cted
92417283

whlp info Connected to Janus: ws://127.0.0.1:
WHIP REST API listening on *

[.
whip:info [ciao] Cre d new WHIP endpoint
whip:i [ciao] Publishing to WHIP
whip:i [Cluu] Terminating WHIP s
whip
whip:info [ci n] PeerConnection detected as cl

.M. Basic Ul to create/manage endpoints)

) Simple WHIP server (anus) — Mozilla Firefox (Private Browsing)
B Simple WHIP server (an x +
< C @ O D localhost:7080

Simple WHIP server (Janus) Admin @ Endpoint <ciao> now active

Endpoints

Endpoint ID VideoRoom Status.

co = ==

.l‘i Writing a WHIP client for testing

¢ Needs to support HTTP (WHIP API) and have a WebRTC stack

* Browsers are the obvious choice, but what about a native solution?
* Many broadcasters today use custom tools (e.g., OBS)

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/

.l‘i Writing a WHIP client for testing

¢ Needs to support HTTP (WHIP API) and have a WebRTC stack

* Browsers are the obvious choice, but what about a native solution?
* Many broadcasters today use custom tools (e.g., OBS)

e Unfortunately OBS-WebRTC is not currently an option
® Used legacy WHIP API, and currently only supports Millicast ingestion

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/

.l‘i Writing a WHIP client for testing

¢ Needs to support HTTP (WHIP API) and have a WebRTC stack
* Browsers are the obvious choice, but what about a native solution?
* Many broadcasters today use custom tools (e.g., OBS)
e Unfortunately OBS-WebRTC is not currently an option
® Used legacy WHIP API, and currently only supports Millicast ingestion

* Chose GStreamer’s webrtcbin' for the purpose

* Used it already with success in other applications (e.g., JamRTC)
* Modular and very powerful, so easy to feed with external sources

'https://gstreamer.freedesktop.org/documentation/webrtc/

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/

i‘i Writing a WHIP client for testing

¢ Needs to support HTTP (WHIP API) and have a WebRTC stack
* Browsers are the obvious choice, but what about a native solution?
* Many broadcasters today use custom tools (e.g., OBS)
e Unfortunately OBS-WebRTC is not currently an option
® Used legacy WHIP API, and currently only supports Millicast ingestion

* Chose GStreamer’s webrtcbin' for the purpose

* Used it already with success in other applications (e.g., JamRTC)
* Modular and very powerful, so easy to feed with external sources

Simple WHIP Client

https://github.com/Iminiero/simple-whip-client/

'https://gstreamer.freedesktop.org/documentation/webrtc/

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/

%4 Simple WHIP Client options

Usage:
whip-client [OPTION?] —-- Simple WHIP client

Help Options:
-h, --help Show help options

Application Options:

-u, —--url Address of the WHIP endpoint (required)

-t, —--token Authentication Bearer token to use (optional)

-A, —--audio GStreamer pipeline to use for audio (optional, required if audio-only)
-V, —--video GStreamer pipeline to use for video (optional, required if video-only)
—-S, —-stun-server STUN server to use, if any (hostname:port)

-T, ——-turn-server TURN server to use, if any (username:password@host:port)

-1, --log-level Logging level (O=disable logging, 7=maximum log level; default: 4)

.H. Simple WHIP Client example

/whip-client -u http://localhost:7080/whip/endpoint/abcl23 \

-t verysecret \

—A "audiotestsrc is-live=true wave=red-noise ! audioconvert !
audioresample ! queue ! opusenc ! rtpopuspay pt=100 ssrc=1 !
queue !
application/x-rtp,media=audio, encoding—name=0PUS, payload=100" \

-V "videotestsrc is-live=true pattern=ball ! videoconvert ! queue !

! queue !

vp8enc deadline=1 ! rtpvp8pay pt=96 ssrc=2
application/x-rtp,media=video, encoding-name=VP8, payload=96" \

-S stun.l.google.com:19302

[()
Ei Simple WHIP Client in action ©

B WHIP client

ription
- (1167 byte

ction connected
I(E gathering completed

.H. Testing my WHIP client with Janus

Janus WebRTC Server: Video Room Deme — Mozilla Firefox (Private Browsing)

Home.

Plugin Demo: Video Room s

Local Video Remote Video #1 Remote Video #2

Remote Video #3 Remote Video #4 Remote Video #5

.M. Other WHIP implementations

¢ A few other implementations are starting to appear already
* Very useful for interoperability testing!

https://github.com/jech/galene/tree/whip
https://github.com/medooze/whip-js/
https://github.com/ggarber/whip-go

.M. Other WHIP implementations

¢ A few other implementations are starting to appear already
* Very useful for interoperability testing!

¢ Juliusz Chroboczek
* WHIP server: https://github.com/jech/galene/tree/whip (Galene integration)

https://github.com/jech/galene/tree/whip
https://github.com/medooze/whip-js/
https://github.com/ggarber/whip-go

.M. Other WHIP implementations

¢ A few other implementations are starting to appear already
* Very useful for interoperability testing!
e Juliusz Chroboczek
* WHIP server: https://github.com/jech/galene/tree/whip (Galene integration)

e Sergio Garcia Murillo

* WHIP client: https://github.com/medooze/whip-js/ (web client)
* WHIP server: Millicast integration

https://github.com/jech/galene/tree/whip
https://github.com/medooze/whip-js/
https://github.com/ggarber/whip-go

.M. Other WHIP implementations

A few other implementations are starting to appear already
* Very useful for interoperability testing!

Juliusz Chroboczek
* WHIP server: https://github.com/jech/galene/tree/whip (Galene integration)

Sergio Garcia Murillo

* WHIP client: https://github.com/medooze/whip-js/ (web client)
* WHIP server: Millicast integration

Gustavo Garcia
e WHIP client: https://github.com/ggarber/whip-go (command-line)

https://github.com/jech/galene/tree/whip
https://github.com/medooze/whip-js/
https://github.com/ggarber/whip-go

.M. Other WHIP implementations

A few other implementations are starting to appear already
* Very useful for interoperability testing!

Juliusz Chroboczek
* WHIP server: https://github.com/jech/galene/tree/whip (Galene integration)

Sergio Garcia Murillo

* WHIP client: https://github.com/medooze/whip-js/ (web client)
* WHIP server: Millicast integration

Gustavo Garcia
e WHIP client: https://github.com/ggarber/whip-go (command-line)

e More to come soon, hopefully!

https://github.com/jech/galene/tree/whip
https://github.com/medooze/whip-js/
https://github.com/ggarber/whip-go

.H. Testing my WHIP client with Janus

Janus WebRTC Server: Video Room Deme — Mozilla Firefox (Private Browsing)

Home.

Plugin Demo: Video Room s

Local Video Remote Video #1 Remote Video #2

Remote Video #3 Remote Video #4 Remote Video #5

.l‘i Testing my WHIP client with Galene

eeeeee

347

penable ¥ - \'_ﬂ’ H
Mite Share Screen

i‘i Testing my WHIP client with Millicast

.M. Testing Sergio’s WHIP client with Janus

0 — Mozilla Firefox (Private Browsing)

Demos » Documentation Papers Needhelp? JanusCon!

Plugin Demo: Video Room s

Local Video Remote Video #1 Remote Video #2

Remote Video #3 Remote Video #4 Remote Video #5

Janus WebRTC Server &M 2014-2021

.M. Testing Sergio’s WHIP client with Galene

U
B Ensblel = .

.M. Testing Sergio’s WHIP client with Millicast

.M. Testing Gustavo’s WHIP client with Janus

0 — Mozilla Firefox (Private Browsing)

Janus Home Demos ~ Documentaon Papers Needhep? JanusCon!

Plugin Demo: Video Room s

Local Video Remote Video #1 Remote Video #2
Remote Video #3 Remote Video #4 Remote Video #5

Janus WebRTC Server 2014-2021

.M. Testing Gustavo’s WHIP client with Galene

PEnsbel ¢ [
Mix Sar e

.l‘i Testing Gustavo’s WHIP client with Millicast

.M. Got some feedback to improve the spec

¢ Interoperability was surprisingly quite successful!

® Even in early stage of specification, draft was easy to implement

¢ All tests across different implementations got a PeerConnection working

.M‘ Got some feedback to improve the spec

¢ Interoperability was surprisingly quite successful!

® Even in early stage of specification, draft was easy to implement

¢ All tests across different implementations got a PeerConnection working

e That said, some potential issues or challenges were identified

® Unlike native clients, web-based WHIP clients are subject to CORS

* RFC8840’s format for candidates may be a bit too “convoluted”?

* Document should expand on what to return in case of errors

* How to respond to PATCH for trickle is unclear too (e.g., 204 vs. 200 vs. ?7?)

® There may be race conditions between PATCH requests when doing an ICE restart

i‘i Next stop: IETF 112 Hackathon!

v
PORA

1 ETF

ABOUT - TOPICS OF INTEREST ~ HOW WE WORK ~ INTERNET STANDARDS ~ News & blog Contact Tools ~ Q Search

> How we work > Running code > IETF Hackathons

IETF 112 Hackathon Online

At IETF Hackathons, developers and subject matter experts discuss, collaborate,
and develop utilities, ideas, sample code and solutions that show practical
implementations of IETF standards.

When: Monday-Friday, November 01-05, 2021 IETF HACKATHONS
Where: Online IETF 110 Hackathon Online
The Hackathon is free to attend and open to everyone. It is a collaborative event, not a competition. IETF 109 Hackathon Online
Any competitiveness among participants is friendly and in the spirit of advancing the pace and IETF 108 Hackathon Online
relevance of new and evolving internet standards. IETF 106 Hackathon
§ singapore
« Register for Hackathon- HERE!
« View the Hackathon attendees list- HERE! IETF 105 Hackathon
Montreal

+ Subscribe to the email list to stay up to date

« Check out the Hackathon wiki to sign up for a project, or add your own. IETF 104 Hackathon Prague
|IETF Hackathon Bangkok
HackatheniCo R IETF Hackathon Montreal

Charles Eckel, Cisco & Barry Leiba, Futurewei |IETF Hackathon Prague

https://www.ietf.org/how/runningcode/hackathons/112-hackathon/

https://www.ietf.org/how/runningcode/hackathons/112-hackathon/

.M. Thanks! Questions? Comments?

Get in touch!
® W https://twitter.com/elminiero
* W https://twitter.com/meetecho
e & https://www.meetecho.com

https://twitter.com/elminiero
https://twitter.com/meetecho
https://www.meetecho.com

