
WISH-a-WHIP:
WebRTC ingest for broadcasting

Lorenzo Miniero
@elminiero

IIT Real-Time Communication 2021 – WebRTC Track
October 13th 2021, Chicago, IL, USA

https://twitter.com/elminiero


A few words about me

Lorenzo Miniero
• Ph.D @ UniNA
• Chairman @ Meetecho
• Main author of Janus®

Contacts and info
• lorenzo@meetecho.com
• https://twitter.com/elminiero
• https://www.slideshare.net/LorenzoMiniero
• https://soundcloud.com/lminiero
• https://lminiero.bandcamp.com

lorenzo@meetecho.com
https://twitter.com/elminiero
https://www.slideshare.net/LorenzoMiniero
https://soundcloud.com/lminiero
https://lminiero.bandcamp.com


There would be no WHIP without Dr. Alex r



Traditional broadcasting



Why not WebRTC?

• Traditional broadcasting efficient but higher latency
• At best (live), delay will typically be in the range of a few seconds

• WebRTC natively conceived for very low latency, instead
• Born for conversational audio/video/data
• Can be (and often is) easily used for monodirectional streaming as well

• Strangely not really considered by the industry up until recently, though
• Topic of my Ph.D years ago (“Streaming Of Large scale Events over Internet cLouds”)
• Clearing the industry FUD: https://webrtcbydralex.com/index.php/2020/04/14/

• Tooling an important aspect to foster WebRTC adoption, here
• e.g., a standard way to send media, and tools à la OBS

https://webrtcbydralex.com/index.php/2020/04/14/


Why not WebRTC?

• Traditional broadcasting efficient but higher latency
• At best (live), delay will typically be in the range of a few seconds

• WebRTC natively conceived for very low latency, instead
• Born for conversational audio/video/data
• Can be (and often is) easily used for monodirectional streaming as well

• Strangely not really considered by the industry up until recently, though
• Topic of my Ph.D years ago (“Streaming Of Large scale Events over Internet cLouds”)
• Clearing the industry FUD: https://webrtcbydralex.com/index.php/2020/04/14/

• Tooling an important aspect to foster WebRTC adoption, here
• e.g., a standard way to send media, and tools à la OBS

https://webrtcbydralex.com/index.php/2020/04/14/


Why not WebRTC?

• Traditional broadcasting efficient but higher latency
• At best (live), delay will typically be in the range of a few seconds

• WebRTC natively conceived for very low latency, instead
• Born for conversational audio/video/data
• Can be (and often is) easily used for monodirectional streaming as well

• Strangely not really considered by the industry up until recently, though
• Topic of my Ph.D years ago (“Streaming Of Large scale Events over Internet cLouds”)
• Clearing the industry FUD: https://webrtcbydralex.com/index.php/2020/04/14/

• Tooling an important aspect to foster WebRTC adoption, here
• e.g., a standard way to send media, and tools à la OBS

https://webrtcbydralex.com/index.php/2020/04/14/


Why not WebRTC?

• Traditional broadcasting efficient but higher latency
• At best (live), delay will typically be in the range of a few seconds

• WebRTC natively conceived for very low latency, instead
• Born for conversational audio/video/data
• Can be (and often is) easily used for monodirectional streaming as well

• Strangely not really considered by the industry up until recently, though
• Topic of my Ph.D years ago (“Streaming Of Large scale Events over Internet cLouds”)
• Clearing the industry FUD: https://webrtcbydralex.com/index.php/2020/04/14/

• Tooling an important aspect to foster WebRTC adoption, here
• e.g., a standard way to send media, and tools à la OBS

https://webrtcbydralex.com/index.php/2020/04/14/


Making WebRTC ingestion easy: WHIP!

https://www.meetecho.com/blog/whip-janus/ (September, 2020)

https://www.meetecho.com/blog/whip-janus/


A new Working Group in the IETF...

https://datatracker.ietf.org/wg/wish/about/

https://datatracker.ietf.org/wg/wish/about/


... and a new draft for the WHIP specification!

https://www.ietf.org/archive/id/draft-ietf-wish-whip-00.html

https://www.ietf.org/archive/id/draft-ietf-wish-whip-00.html


WebRTC-HTTP ingestion protocol (WHIP)

• HTTP-based signalling to create sendonly PeerConnections

• HTTP POST to send SDP offer, and get an SDP answer in the response

• Teardown of sessions using HTTP DELETE

• Authentication and authorization via Bearer tokens

• https://www.rfc-editor.org/rfc/rfc6750.html

• Trickle and ICE restart via HTTP PATCH and SDP fragments

• https://www.rfc-editor.org/rfc/rfc8840.html

• Everything else is your usual WebRTC!

• ICE, DTLS, etc.

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html


WebRTC-HTTP ingestion protocol (WHIP)

• HTTP-based signalling to create sendonly PeerConnections

• HTTP POST to send SDP offer, and get an SDP answer in the response

• Teardown of sessions using HTTP DELETE

• Authentication and authorization via Bearer tokens

• https://www.rfc-editor.org/rfc/rfc6750.html

• Trickle and ICE restart via HTTP PATCH and SDP fragments

• https://www.rfc-editor.org/rfc/rfc8840.html

• Everything else is your usual WebRTC!

• ICE, DTLS, etc.

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html


WebRTC-HTTP ingestion protocol (WHIP)

• HTTP-based signalling to create sendonly PeerConnections

• HTTP POST to send SDP offer, and get an SDP answer in the response

• Teardown of sessions using HTTP DELETE

• Authentication and authorization via Bearer tokens

• https://www.rfc-editor.org/rfc/rfc6750.html

• Trickle and ICE restart via HTTP PATCH and SDP fragments

• https://www.rfc-editor.org/rfc/rfc8840.html

• Everything else is your usual WebRTC!

• ICE, DTLS, etc.

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html


WebRTC-HTTP ingestion protocol (WHIP)

• HTTP-based signalling to create sendonly PeerConnections

• HTTP POST to send SDP offer, and get an SDP answer in the response

• Teardown of sessions using HTTP DELETE

• Authentication and authorization via Bearer tokens

• https://www.rfc-editor.org/rfc/rfc6750.html

• Trickle and ICE restart via HTTP PATCH and SDP fragments

• https://www.rfc-editor.org/rfc/rfc8840.html

• Everything else is your usual WebRTC!

• ICE, DTLS, etc.

https://www.rfc-editor.org/rfc/rfc6750.html
https://www.rfc-editor.org/rfc/rfc8840.html


A few sequence diagrams



A few sequence diagrams



A few sequence diagrams



A WHIP server based on Janus

• Janus is a popular WebRTC server, so good option for WHIP
• It implements its own JSON-based API, though (Janus API)

• Simple (and transparent) solution: basic API translator in front of Janus
• WHIP API maps quite simply to set of Janus API primitives
• No need to change anything in the WebRTC stack

• Implemented simple prototype using node.js and Express
• REST server that implements the WHIP API, and talks to Janus accordingly
• Only takes care of ingest: distribution out of scope (e.g., via SOLEIL)

Simple WHIP Server
https://github.com/lminiero/simple-whip-server/

https://github.com/lminiero/simple-whip-server/


A WHIP server based on Janus

• Janus is a popular WebRTC server, so good option for WHIP
• It implements its own JSON-based API, though (Janus API)

• Simple (and transparent) solution: basic API translator in front of Janus
• WHIP API maps quite simply to set of Janus API primitives
• No need to change anything in the WebRTC stack

• Implemented simple prototype using node.js and Express
• REST server that implements the WHIP API, and talks to Janus accordingly
• Only takes care of ingest: distribution out of scope (e.g., via SOLEIL)

Simple WHIP Server
https://github.com/lminiero/simple-whip-server/

https://github.com/lminiero/simple-whip-server/


A WHIP server based on Janus

• Janus is a popular WebRTC server, so good option for WHIP
• It implements its own JSON-based API, though (Janus API)

• Simple (and transparent) solution: basic API translator in front of Janus
• WHIP API maps quite simply to set of Janus API primitives
• No need to change anything in the WebRTC stack

• Implemented simple prototype using node.js and Express
• REST server that implements the WHIP API, and talks to Janus accordingly
• Only takes care of ingest: distribution out of scope (e.g., via SOLEIL)

Simple WHIP Server
https://github.com/lminiero/simple-whip-server/

https://github.com/lminiero/simple-whip-server/


A WHIP server based on Janus

• Janus is a popular WebRTC server, so good option for WHIP
• It implements its own JSON-based API, though (Janus API)

• Simple (and transparent) solution: basic API translator in front of Janus
• WHIP API maps quite simply to set of Janus API primitives
• No need to change anything in the WebRTC stack

• Implemented simple prototype using node.js and Express
• REST server that implements the WHIP API, and talks to Janus accordingly
• Only takes care of ingest: distribution out of scope (e.g., via SOLEIL)

Simple WHIP Server
https://github.com/lminiero/simple-whip-server/

https://github.com/lminiero/simple-whip-server/


Distributing a WHIP Janus stream: SOLEIL



Distributing a WHIP Janus stream: SOLEIL



Mapping WHIP interactions to the Janus API



Mapping WHIP interactions to the Janus API



Mapping WHIP interactions to the Janus API



Mapping WHIP interactions to the Janus API



Mapping WHIP interactions to the Janus API



Simple WHIP Server in action



Basic UI to create/manage endpoints)



Writing a WHIP client for testing

• Needs to support HTTP (WHIP API) and have a WebRTC stack
• Browsers are the obvious choice, but what about a native solution?
• Many broadcasters today use custom tools (e.g., OBS)

• Unfortunately OBS-WebRTC is not currently an option
• Used legacy WHIP API, and currently only supports Millicast ingestion

• Chose GStreamer’s webrtcbin1 for the purpose
• Used it already with success in other applications (e.g., JamRTC)
• Modular and very powerful, so easy to feed with external sources

Simple WHIP Client
https://github.com/lminiero/simple-whip-client/

1https://gstreamer.freedesktop.org/documentation/webrtc/

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/


Writing a WHIP client for testing

• Needs to support HTTP (WHIP API) and have a WebRTC stack
• Browsers are the obvious choice, but what about a native solution?
• Many broadcasters today use custom tools (e.g., OBS)

• Unfortunately OBS-WebRTC is not currently an option
• Used legacy WHIP API, and currently only supports Millicast ingestion

• Chose GStreamer’s webrtcbin1 for the purpose
• Used it already with success in other applications (e.g., JamRTC)
• Modular and very powerful, so easy to feed with external sources

Simple WHIP Client
https://github.com/lminiero/simple-whip-client/

1https://gstreamer.freedesktop.org/documentation/webrtc/

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/


Writing a WHIP client for testing

• Needs to support HTTP (WHIP API) and have a WebRTC stack
• Browsers are the obvious choice, but what about a native solution?
• Many broadcasters today use custom tools (e.g., OBS)

• Unfortunately OBS-WebRTC is not currently an option
• Used legacy WHIP API, and currently only supports Millicast ingestion

• Chose GStreamer’s webrtcbin1 for the purpose
• Used it already with success in other applications (e.g., JamRTC)
• Modular and very powerful, so easy to feed with external sources

Simple WHIP Client
https://github.com/lminiero/simple-whip-client/

1https://gstreamer.freedesktop.org/documentation/webrtc/

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/


Writing a WHIP client for testing

• Needs to support HTTP (WHIP API) and have a WebRTC stack
• Browsers are the obvious choice, but what about a native solution?
• Many broadcasters today use custom tools (e.g., OBS)

• Unfortunately OBS-WebRTC is not currently an option
• Used legacy WHIP API, and currently only supports Millicast ingestion

• Chose GStreamer’s webrtcbin1 for the purpose
• Used it already with success in other applications (e.g., JamRTC)
• Modular and very powerful, so easy to feed with external sources

Simple WHIP Client
https://github.com/lminiero/simple-whip-client/

1https://gstreamer.freedesktop.org/documentation/webrtc/

https://github.com/lminiero/simple-whip-client/
https://gstreamer.freedesktop.org/documentation/webrtc/


Simple WHIP Client options

Usage:
whip-client [OPTION?] -- Simple WHIP client

Help Options:
-h, --help Show help options

Application Options:
-u, --url Address of the WHIP endpoint (required)
-t, --token Authentication Bearer token to use (optional)
-A, --audio GStreamer pipeline to use for audio (optional, required if audio-only)
-V, --video GStreamer pipeline to use for video (optional, required if video-only)
-S, --stun-server STUN server to use, if any (hostname:port)
-T, --turn-server TURN server to use, if any (username:password@host:port)
-l, --log-level Logging level (0=disable logging, 7=maximum log level; default: 4)



Simple WHIP Client example

./whip-client -u http://localhost:7080/whip/endpoint/abc123 \
-t verysecret \
-A "audiotestsrc is-live=true wave=red-noise ! audioconvert !

audioresample ! queue ! opusenc ! rtpopuspay pt=100 ssrc=1 !
queue !
application/x-rtp,media=audio,encoding-name=OPUS,payload=100" \

-V "videotestsrc is-live=true pattern=ball ! videoconvert ! queue !
vp8enc deadline=1 ! rtpvp8pay pt=96 ssrc=2 ! queue !
application/x-rtp,media=video,encoding-name=VP8,payload=96" \

-S stun.l.google.com:19302



Simple WHIP Client in action



Testing my WHIP client with Janus



Other WHIP implementations

• A few other implementations are starting to appear already
• Very useful for interoperability testing!

• Juliusz Chroboczek
• WHIP server: https://github.com/jech/galene/tree/whip (Galene integration)

• Sergio Garcia Murillo
• WHIP client: https://github.com/medooze/whip-js/ (web client)
• WHIP server: Millicast integration

• Gustavo Garcia
• WHIP client: https://github.com/ggarber/whip-go (command-line)

• More to come soon, hopefully!

https://github.com/jech/galene/tree/whip
https://github.com/medooze/whip-js/
https://github.com/ggarber/whip-go


Other WHIP implementations

• A few other implementations are starting to appear already
• Very useful for interoperability testing!

• Juliusz Chroboczek
• WHIP server: https://github.com/jech/galene/tree/whip (Galene integration)

• Sergio Garcia Murillo
• WHIP client: https://github.com/medooze/whip-js/ (web client)
• WHIP server: Millicast integration

• Gustavo Garcia
• WHIP client: https://github.com/ggarber/whip-go (command-line)

• More to come soon, hopefully!

https://github.com/jech/galene/tree/whip
https://github.com/medooze/whip-js/
https://github.com/ggarber/whip-go


Other WHIP implementations

• A few other implementations are starting to appear already
• Very useful for interoperability testing!

• Juliusz Chroboczek
• WHIP server: https://github.com/jech/galene/tree/whip (Galene integration)

• Sergio Garcia Murillo
• WHIP client: https://github.com/medooze/whip-js/ (web client)
• WHIP server: Millicast integration

• Gustavo Garcia
• WHIP client: https://github.com/ggarber/whip-go (command-line)

• More to come soon, hopefully!

https://github.com/jech/galene/tree/whip
https://github.com/medooze/whip-js/
https://github.com/ggarber/whip-go


Other WHIP implementations

• A few other implementations are starting to appear already
• Very useful for interoperability testing!

• Juliusz Chroboczek
• WHIP server: https://github.com/jech/galene/tree/whip (Galene integration)

• Sergio Garcia Murillo
• WHIP client: https://github.com/medooze/whip-js/ (web client)
• WHIP server: Millicast integration

• Gustavo Garcia
• WHIP client: https://github.com/ggarber/whip-go (command-line)

• More to come soon, hopefully!

https://github.com/jech/galene/tree/whip
https://github.com/medooze/whip-js/
https://github.com/ggarber/whip-go


Other WHIP implementations

• A few other implementations are starting to appear already
• Very useful for interoperability testing!

• Juliusz Chroboczek
• WHIP server: https://github.com/jech/galene/tree/whip (Galene integration)

• Sergio Garcia Murillo
• WHIP client: https://github.com/medooze/whip-js/ (web client)
• WHIP server: Millicast integration

• Gustavo Garcia
• WHIP client: https://github.com/ggarber/whip-go (command-line)

• More to come soon, hopefully!

https://github.com/jech/galene/tree/whip
https://github.com/medooze/whip-js/
https://github.com/ggarber/whip-go


Testing my WHIP client with Janus



Testing my WHIP client with Galene



Testing my WHIP client with Millicast



Testing Sergio’s WHIP client with Janus



Testing Sergio’s WHIP client with Galene



Testing Sergio’s WHIP client with Millicast



Testing Gustavo’s WHIP client with Janus



Testing Gustavo’s WHIP client with Galene



Testing Gustavo’s WHIP client with Millicast



Got some feedback to improve the spec

• Interoperability was surprisingly quite successful!

• Even in early stage of specification, draft was easy to implement

• All tests across different implementations got a PeerConnection working

• That said, some potential issues or challenges were identified

• Unlike native clients, web-based WHIP clients are subject to CORS

• RFC8840’s format for candidates may be a bit too “convoluted”?

• Document should expand on what to return in case of errors

• How to respond to PATCH for trickle is unclear too (e.g., 204 vs. 200 vs. ??)

• There may be race conditions between PATCH requests when doing an ICE restart



Got some feedback to improve the spec

• Interoperability was surprisingly quite successful!

• Even in early stage of specification, draft was easy to implement

• All tests across different implementations got a PeerConnection working

• That said, some potential issues or challenges were identified

• Unlike native clients, web-based WHIP clients are subject to CORS

• RFC8840’s format for candidates may be a bit too “convoluted”?

• Document should expand on what to return in case of errors

• How to respond to PATCH for trickle is unclear too (e.g., 204 vs. 200 vs. ??)

• There may be race conditions between PATCH requests when doing an ICE restart



Next stop: IETF 112 Hackathon!

https://www.ietf.org/how/runningcode/hackathons/112-hackathon/

https://www.ietf.org/how/runningcode/hackathons/112-hackathon/


Thanks! Questions? Comments?

Get in touch!
• https://twitter.com/elminiero
• https://twitter.com/meetecho
• https://www.meetecho.com

https://twitter.com/elminiero
https://twitter.com/meetecho
https://www.meetecho.com

