
WebCodecs, WebTransport and the Next
Generation of Web Media APIs

October 11, 2022

WebRTC, Mobility, Cloud, IOT and More...

IIT REAL-TIME COMMUNICATIONS
Conference & Expo Oct 10-13, 2022 Chicago

Bernard Aboba
Principal Architect, Microsoft 1

Jan-Ivar Bruaroey
Staff Software Engineer, Mozilla

The Pandemic Challenge
● A new wave of technology reached the mass market during the

pandemic:
○ Podcasting
○ Video conferencing
○ Video streaming services (live, video-on-demand)
○ Game streaming
○ IoT devices (doorbells/security, exercise equipment, robots, smart speakers)
○ Large scale webinars, classes, “town hall” meetings (100K+ viewers)
○ Online events (auctions, conferences, sporting events, concerts)
○ Interactive entertainment (co-watching, “together mode”, etc.)

● Compiled in WebRTC-NV Use Cases, WebTransport Use Cases
● The new use cases blur the lines between “streaming” and “realtime

communications” and create a new challenge:
○ Can we develop web APIs (and protocols) useful for both “streaming”

and RTC applications (and combinations of both?)

https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webtransport/blob/main/use-cases.md

Next generation Web media APIs
Overcome the “tyranny of OR”. Multi-threaded
applications can deliver both low-latency and large scale,
through low-level access to building blocks:
● Capture
● A/V processing (e.g. machine learning)
● Encode/Decode
● Transport (with support for caching)
● Rendering

Next generation Web media APIs
● Capture

○ Media Capture and Streams Extensions
○ Mediacapture-transform

● Encode/decode
○ WebCodecs
○ MSEv2

● Transport
○ WebTransport (HTTP/3 over QUIC)
○ WebRTC data channel in Workers (SCTP/DTLS/UDP)

● Framework
○ WHATWG Streams
○ Web Assembly

https://w3c.github.io/mediacapture-extensions/#transferable-mediastreamtrack
https://w3c.github.io/mediacapture-transform/
https://w3c.github.io/webcodecs/
https://w3c.github.io/media-source/
https://w3c.github.io/webtransport/
https://w3c.github.io/webrtc-extensions/#rtcdatachannel-extensions
https://streams.spec.whatwg.org/
https://webassembly.github.io/spec/core/

The “Pipeline” Model (WHATWG Streams)

● Send

● Receive

Camera Effects Serialize TransportEncode

Transport Deserialize Effects RenderDecode

https://webrtc.internaut.com/wc/wtSender2/

Last Year… and This Year
Last year at the IIT RTC 2021 Conference, we introduced the
WebCodecs API.

This year’s presentation will introduce the WebTransport API,
and will demonstrate how to combine WebCodecs with
WebTransport to build multi-threaded applications.

https://www.rtc-conference.com/2021/presentation/?hid=880
https://www.rtc-conference.com/2021/presentation/?hid=880

What is WebTransport?

WebTransport is a transport protocol (standardized in IETF WEBTRANS WG)
and an API (standardized in W3C WebTransport WG), that enables clients
operating under the Web security model to communicate with a remote server
using a secure, multiplexed transport.
WebTransport provides:

• Unidirectional and bidirectional streams of reliable and ordered data.

• Support for receiving and sending datagrams

• Operation over HTTP/3, with potential fallback to HTTP/2

7

What is exciting about WebTransport?
• Protocol & API potentially usable in a wide range of use cases:

• Video conferencing & telephony applications

• Gaming

• Low latency & live media delivery

• Looks like HTTP/3 to firewalls, proxies, network switches etc. which can greatly facilitate its
reach and robustness.

• Browser support gives you billions of addressable clients (in addition to native OS support).

• Datagram access in JavaScript ☺

• When combined with WebCodecs and WebAssembly, closes the gap between native and
browser RTC applications.

8

Use Cases
https://github.com/w3c/webtransport/blob/main/use-cases.md

1. Machine learning (client/server)
2. Multiplayer Gaming - web and consoles
3. Low-latency live streaming
4. Cloud Game Streaming
5. Server-based video conferencing
6. Remote desktop
7. Time Synchronized Multimedia Web communications
8. IOT sensor and analytics data transfer
9. PubSub Models - avoid long-polling

9

https://github.com/w3c/webtransport/blob/main/use-cases.md

The Protocol

10

The stack

NETWORK (IP)

TCP

TLS (optional)

HTTP1.x/2

NETWORK (IP)

TCP

TLS (optional)

HTTP1.x/2

WEBSOCKET

NETWORK (IP)

UDP

ICE, STUN,TURN

DTLS

SCTP
SRTP

Data Media

NETWORK (IP)

UDP

HTTP/3

TLS 1.3

QUIC

HTTP1.x/2 HTTP/3 WEBSOCKET WebRTC

NETWORK (IP)

UDP

TLS 1.3QUIC (streams +
datagrams)

WebTransport

Http3Transport

TCP

TLS

HTTP/2 HTTP/3
(streams + datagrams)

WEBTRANSPORT

Http2Transport

Bidirectional Communication on the Web

Client-Server Peer-to-peer

Reliable and ordered WebSocket
(also WebTransport)

RTCDataChannelReliable but unordered

WebTransport
Unreliable and

unordered

12

Establishing a WebTransport Connection
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3

13

• After HTTP/3 connection is established, client and server send
SETTINGS frames.

• In order to indicate support for WebTransport, both the client and the
server MUST send a SETTINGS_ENABLE_WEBTRANSPORT value
set to "1" in their SETTINGS frame.

• The client MUST NOT send a WebTransport request until it has
received the setting indicating WebTransport support from the server.

• Similarly, the server MUST NOT process any incoming WebTransport
requests until the client settings have been received, as the client may
be using a version of WebTransport extension that is different from the
one used by the server.

https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3

Establishing a WebTransport Connection (cont’d)
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3

14

• Client then sends an extended CONNECT request
[RFC8441].
• If the server accepts the request, a WebTransport session is

established.

• The CONNECT stream ID identifies a WebTransport session within
the connection, known as a Session ID.

• A WebTransport session is terminated when the CONNECT stream
that created it is closed.

https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3
https://www.ietf.org/archive/id/draft-ietf-webtrans-http3-03.html#RFC8441

HTTP/3

15

Unidirectional Streams

16

Bidirectional Streams

17

Datagrams
RFC 9221
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram

18

Quarter Stream ID: A variable-length integer that contains the value of the
Stream ID that this datagram is associated with, divided by four. The division
by four stems from the fact that HTTP requests are sent on client-initiated
bidirectional streams, and those have stream IDs that are divisible by four.

QUIC Datagram {
 Type (i) = 0x30, 0x31
 [Length (i)], //present only when Len bit is set (0x31)
 Quarter Stream ID (i),
 HTTP Datagram Payload (..),
 }

https://datatracker.ietf.org/doc/html/rfc9221
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram

Buffering (Section 4.5)

19

Pooling
● Pooling allows multiple WebTransport sessions to share a

connection.
○ Use cases: Multiple tabs of the same application sharing a

connection.
○ WebTransport load balancer multiplexing sessions to a server, over a

single connection.
○ How to allocate bw/priority to the sessions?
○ No implementations, off by default in the API.

● In HTTP/3, streams and datagrams are linked to the
CONNECT streamID.

● In HTTP/2, each session has one connect stream.

20

HTTP/2

21

The API

22

WebTransport status as of Oct 2022

● API in Working Draft Status at https://www.w3.org/TR/webtransport/
● Github project milestones now aligned with W3C release process - see Candidate

recommendation milestone
● Browser support

○ Chrome shipped WebTransport with M97 in January 2022
■ Protocol stable as of M99.

○ Firefox anticipated having WebTransport in Nightly build by end of year.
● An echo server for Web Platform Tests is available.
● Timetable for this year and next:

○ Sept 30 : Candidate for Recommendation - requires stability in API
○ Dec 30 : Proposed Recommendation - requires two independent

implementations per our charter.
○ Feb 2023: Call for Review of a Proposed Recommendation
○ April 2023 - Publication by W3C as a Recommendation after AC review.

23

https://www.w3.org/TR/webtransport/
https://github.com/w3c/webtransport/milestone/3
https://github.com/w3c/webtransport/milestone/3
https://web-platform-tests.org/tools/webtransport/README.html

WebTransport Session Functionality

24

Capabilities by Stream Type

25

Webtransport Stream Signals

26

Protocol Mappings (Section 10)

27

QUIC Protocol -> API Effect (Section 10)

28

WebTransport > WebSocket
WebSocket’s message-framed semantics Receiver:
socket.send();
socket.send();

WebTransport’s long-lived stream semantics Receiver:
writer.write(utf8.encode());
writer.write(utf8.encode());

WebTransport’s stream-per-message semantics Receiver:
for (const msg of [,]) {
 const writable = await wt.createUnidirectionalStream();
 const encoder = new TextEncoderStream("utf-8");
 const writer = writable.pipeThrough(encoder).getWriter();
 await writer.write(msg);
 await writer.close();
} 29

“Hello World!”

“How are you?”

“Hello World!”

“How are you?”

“Hello World!”

“How are you?”
“Hello World!How are you?”

“Hello World!” “How are you?” “How are you?”

“Hello World!”

 (stream of unframed ordered data)

(in-parallel streams arrive unordered)

 (framed + ordered = blocking)

WebTransport Interface

30

WebTransport Interface (cont’d)

31

WebTransport Interface (cont’d)

32

Example

33

Observations

34

• await wt.ready not required before await
wt.createUnidirectionalStream() or
wt.createBidirectionalStream()

• Promises won’t resolve before connection is established.

• For sending datagrams, await writer.ready to avoid dropping due to
exceeding outgoingMaxAge.

• allowPooling is false by default. Pooling not implemented, so…

• getStats() not yet implemented

• Event for estimated bandwidth under discussion.

• HTTP/2 fallback (wt.reliability) not yet implemented.

Datagram Interface

35

Example

36

Connection Statistics
https://w3c.github.io/webtransport/

37

● Missing CC info
○ ecn, ACK info
○ latest_rtt
○ pkt_departure/pkt_arrival

Stream Stats

38

Demos
1. Basic echo https://webrtc.internaut.com/wt/ (also

https://webtransport.day/)
2. File upload fiddle https://jsfiddle.net/jib1/z965juL7/
3. WARP - https://quic.video/demo/

a. GitHub repo:
https://github.com/kixelated/warp-demo

39

https://webrtc.internaut.com/wt/
https://webtransport.day/
https://jsfiddle.net/jib1/z965juL7/
https://quic.video/demo/
https://github.com/kixelated/warp-demo

4: Integrating WebCodecs and WebTransport

1. This demo is an extension of a WebCodecs in Workers
sample, which encodes and decodes video in a WHATWG
Streams pipeline.

a. Live site: https://webrtc.internaut.com/wc/wcWorker/
b. Github repo: https://github.com/aboba/wc-demo/

2. This demo adds network transport to the sending and
receiving pipelines, bouncing encoded frames off an echo
server in the cloud.

a. Live site: https://webrtc.internaut.com/wc/wtSender2/
b. Live site with BYOB reads (Chrome Canary):

https://webrtc.internaut.com/wc/wtSender4/
c. GitHub repo: https://github.com/aboba/wt-demo

40

https://webrtc.internaut.com/wc/wcWorker/
https://github.com/aboba/wc-demo/
https://webrtc.internaut.com/wc/wtSender2/
https://webrtc.internaut.com/wc/wtSender4/
https://github.com/aboba/wt-demo

Parameters to Select

41

● Bitrate: “Average Target Bitrate” target provided to the encoder.
○ Actual bandwidth consumption is typically lower.

● Keyframe interval: number of frames between each keyframe.
● Codec: VP8, VP9, H.264 or AV1

○ Some oddities noted with VP9 (large frame size with “realtime”)
○ AV1 most solid on MacOS
○ H.265 not supported currently.

● Hardware Acceleration Preference: hw accelerated versus software
encode/decode. Hw acceleration often not available.

● Latency goal: “quality” produces smaller frame sizes, but takes
(marginally) longer than “realtime”.

● Scalability mode: how many temporal layers to use. Enables differential
protection for the base layer.

● Resolution: reflected in getUserMedia constraints. If your camera doesn’t
support the requested resolution, window will be blacked out.

High Level Observations
● Video quality

○ Quality dependent on device and camera.
○ Good quality possible with desktop/high quality notebook and

appropriate settings.
○ Full-HD video (talking head) consumes < 500 kbps.

● CPU Utilization
○ Higher resolutions (e.g. full-HD) or complex codecs can result in

high CPU utilization.
● Resilience

○ QUIC reliable transport + temporal scalability provides good
resilience.
■ QUIC stream/frame transport provides retransmission.
■ Temporal scalability enables partial reliability.

● Non-base layer frames can be considered discardable. 42

High Level Observations (cont’d)
● Latency

○ Observed glass-glass latency considerably higher than
measured frame RTT.

○ P-frames are typically small (a few packets) and exhibit low
frame RTT.

○ I-frames are much larger (10X or more) and exhibit frame
RTT multiple times higher (though not always).
■ Effect most pronounced with high GoP sizes (only a few

I-frames per experiment)
■ Effect seen even under conditions of low bandwidth

utilization and low loss.
■ Potentially due to “app limited” congestion window? 43

Example
● AV1 @full-hd

○ Target average bitrate = 1 Mbps, GoP = 300
○ P-frame RTT ~ 100 ms with low jitter/no frame loss
○ For large frames, frame RTT multiple times higher
○ Glass-glass latency ~ 630 ms
○ Much lower glass-glass latency with “no network”

sandbox

44

Minimum Round-Trip Transit Time

Congestion Window
Limitation or RTX and
queuing delays?

