

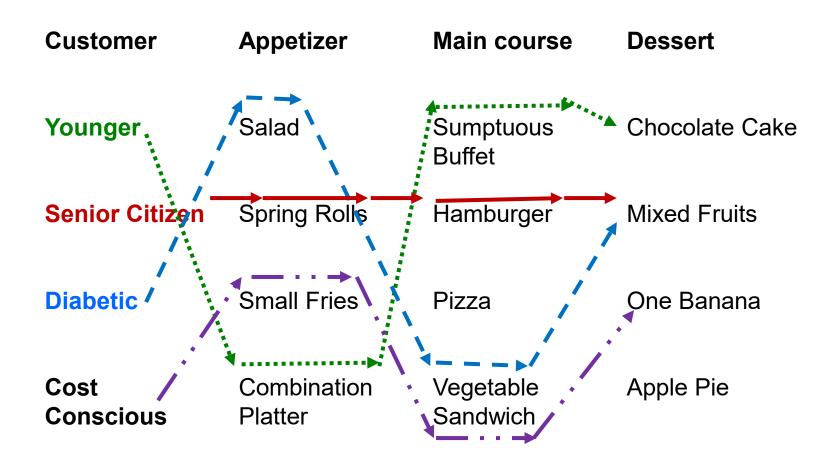
5G Network Slicing - The Panacea for Realtime Network Reliability, Data, and Latency Challenges

Dr. Suresh Borkar Associate Teaching Professor Department of ECE Illinois Institute of Technology, Chicago borkar@iit.edu

Programmable Realtime Networks RealTime Communications (RTC) Oct 4, 2023

5G Network Slicing

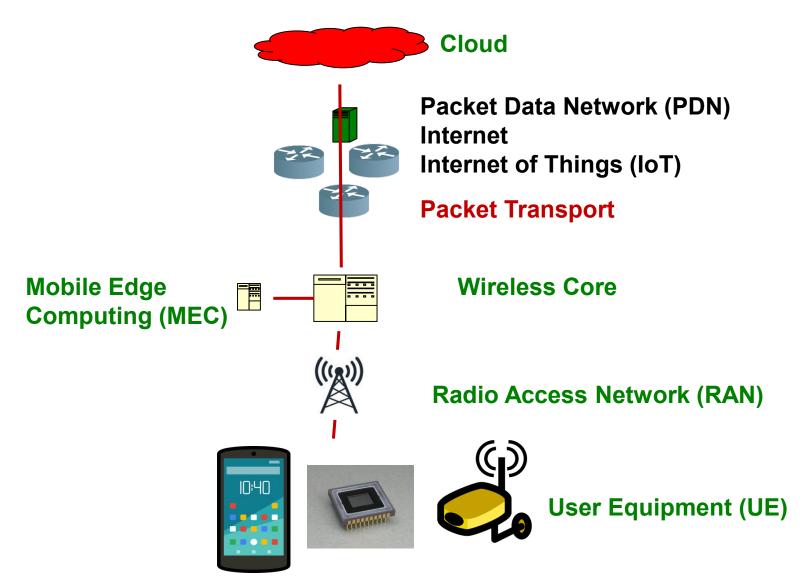
- 5G Network Slicing Context
- 5G Wireless Platform
- Network Slicing Solution
- Network Slicing Provisioning
- Ultra Reliable Low Latency Offer


Network Slice

- Virtual, Independent End-to-end Networks within the Mobile Operator's Physical Network
 - Radio Access Network (RAN), Transport, Core, and Mobile Edge
- Different Requirements on Functionality
 - Priority, Charging, Policy Control, Security, and Mobility
- Differences in Performance Requirements
 - Latency, Mobility, Availability, Reliability and Data Rates

Slicing – Restaurant Example

Typical Customer Requirements: Expense, Calories, Carbs, Sugar content



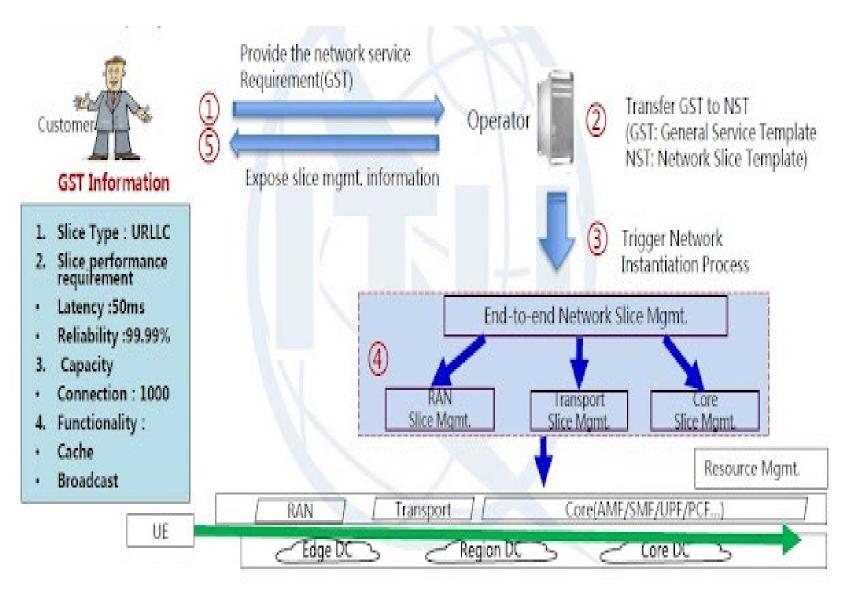
4G versus 5G Network Slicing **4G**:

- **Use Access Point Name (APN), Virtual Private** • **Networking (VPN), and Fixed Networks**
 - Limitations •
 - **Configurations had to be Hardcoded** •
 - **Process Highly Manual and Cumbersome** •
 - Lack of Flexibility and Differentiation
- **5G**:
- Service Flexibility and Ability to Deliver Services Faster •
 - High Security, Isolation, and Applicable ٠ **Characteristics**
 - **Efficient Usage and Management of the Network** Resources
 - Differentiated Services at Scale

Flexible, programmable, with open interfaces 5

5G Architecture

Voice + Data + Video + Machine Type Communication (MTC)

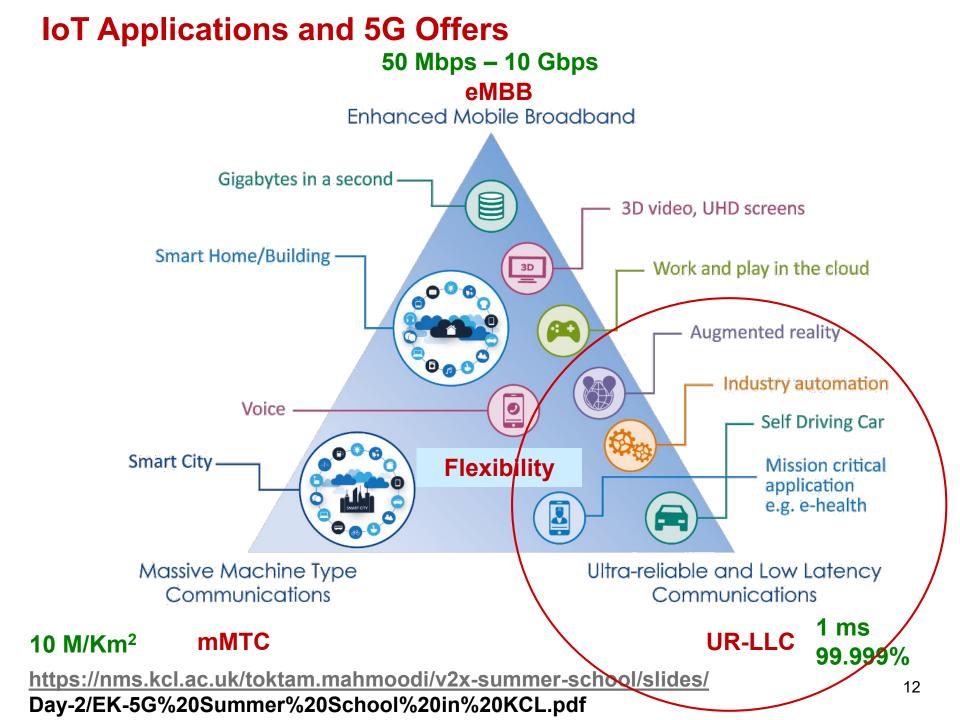

Forming of End-to-End Virtual Network

- Service/Application/Business Layer
 - High-level Descriptions of End-to-end Network Services and Interfaces for Creating New Services.
- Network Function Layer
 - Virtual and Real Network Functions to Run on the Infrastructure Resources
- Infrastructure/Resource Layer
 - A Reserve (Pool) of Resources
 - Computational, Storage, Network and Radio
- Management and Orchestration Entity
 - Responsible for the Implementation of Slices using
 - Control the Entire Life Cycle of Slices

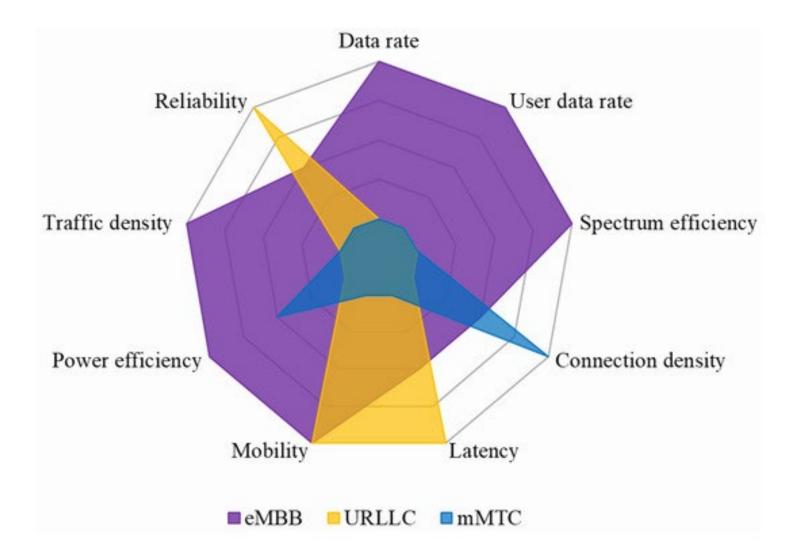
Flexible, Dynamic, and Programmable 5G network Platform

- Network Function Virtualization (NFV)
 - Create and Modify Network Resources to Reflect the Service
 - High Network Efficiency through Optimum Resource
 Utilization.
- Software Defined Networking (SDN)
 - Introduce Dynamicity to the Transport Network
 - **Programmatic Control of the Traffic Management Processes**
- Cloud Based Architecture
 - Automated Network and Service Orchestration
 - Reduced Creation Time Scales for New and Innovative Services
- The Control Plane and User Plane Separation (CUPS)
 - Decentralization of the Data Forwarding Component
 - Packet Processing and Traffic Aggregation Performed in the Distributed Edge Clouds

5G Slice Provisioning Process


https://blog.3g4g.co.uk/2019/01/5g-slicing-templates.htm

Key Entities Associated with a Network Slice


- Slice Specific Authentication and Authorization (NSSAA)
 - Augment Primary Authentication with Authenticated and Authorized by a AAA Server using Additional Credentials
- Network Slice Management Function (NSMF)
 - Perform Cross-Domain Network Slice Orchestration
 - Allow for the Instantiation and Configuration Of Network Slice Resources for each of the Use Case Types
- Single-Network Slice Selection Assistance (S-NSSAI)
- Unique Identification of a Network Slice
 - Slice Service Type (SST) and Slice Differentiator (SD)

Working of a Typical Network Slice Algorithm

- The Slice Node Importance Is Ranked by considering the Node Resource and Topology Attributes
- The Slice Nodes are Provisioned according to the Ranking Results in the Slice Link Provisioning Stage
- A Shortest Path Algorithm Is Implemented to Obtain the Candidate Physical Paths for the Slice Link
- Strategy for Selecting a Candidate Physical Path to Increase the Slice Acceptance Ratio
 - Calculate the Path Factor Pf which is the Product of the Maximum Link Bandwidth Utilization of the Candidate Physical Path and its Hop-count
 - Choose the Candidate Physical Path with the Smallest Pf To Host The Slice Link

5G Offer Characteristics

5QI QoS for UR-LLC Type Applications

5QI Value	Resource Type	Default Priority Level	Packet Delay Budget	Packet Error Rate	Default Max Data Burst Volume	Default Averag- ing Window	Example Services
82	Delay- critical GBR	19	10 ms	10-4	255 Bytes	2000ms	Discrete Auto- mation

GBR: Guaranteed Bit Rate

Key Performance Indicator (KPI) for URLLC Offer Core

Attribute		Value
Availability		99.999
Session and Service Continuity Support		1
Slice quality of service	3GPP 5QI	82
Supported device velocity		2

Application Specific

Attribute	Value
Data rate	Range up to 20 Gps
Spectral Efficiency	Upto 30 bps/Hertz
Density of connection	Upto 1M devices/km ²
Mobility	Upto 500 Km/hr.

Bounded latency, ultra-reliable data delivery and ultra-low latency 15

Summary

- Offer Differentiated Network Services with varying Network Performance Characteristics
- End-to-end Network Slice Orchestration and Operations Solution spanning RAN, Edge, Transport, and Core Network Domains
- URLLC Slice Required High Reliability and Low Latency
 - Autonomous Vehicle, E-health, Factory Automation
- Segment Attributes into Core and Application Specific Base
 - Core: Availability. Session And Service Continuity Support, Slice Quality Of Service (Qos), Supported Device Velocity
 - Application Specific: Data Rate, Spectral Efficiency, Density of Connection, Mobility

Questions / Clarifications?