
Efficient Integration of
GStreamer Pipelines into

External S/W Components
VLADIMIR BELOBORODOV / I IT RTC 2023 PRESENTATION

Briefly About Myself

• Vladimir “Vlad” Beloborodov

• Senior Staff Engineer and S/W Architect at PASA

• Professional Experience
• Telecom and UC industries

• Embedded Systems and IoT

• Automotive Digital Cockpit Designs

• Part of WebRTC community since 2012

• Well-developed time-proven framework
• Cross-platform, with many prog. lang. bindings

• Very flexible pipeline-based approach

• Wide selection of pipeline elements
• GST repo itself offers ~900 elements already

• Support for many h/w-accelerated video coders

• Great as standalone tool or part of apps

Media Processing with GStreamer (“GST”)

Integrating GStreamer with Your App

• As part of your app process itself
• More straightforward and easier to implement

• (Potentially) the most efficient / performant

• As external process communicating with the app
• App and GST can use different runtime libs (for libc, etc.)

• More modular and composable solution designs

• (Potentially) improved robustness and security

• Stepping-stone to s/w designs for heterogeneous compute

Integrating GStreamer with Your App

• As part of your app process itself
• appsrc and appsink are your friends ☺

• Prefer native callbacks to signals

• Ensure you properly support GST threading model

• As external process communicating with the app
• Data exchange over sockets (good for distributed designs)

• Data exchange over shared memory (better – if available)

Integrating GStreamer with Your App

• As part of your app process itself
• appsrc and appsink are your friends ☺

• Prefer native callbacks to signals

• Ensure you properly support GST threading model

• As external process communicating with the app
• Data exchange over sockets (good for distributed designs)

• Data exchange over shared memory (better – if available)

Our focus today

GST elements shmsrc and shmsink

• Available as part of “GStreamer Bad Plug-ins”
• Implemented and contributed by Collabora engineers in 2009

• Local sockets for control and sharing memory between processes

• Shared memory for data exchange (shm_open / shm_unlink)

• Limitations, concerns and practical problems
• Available as GST elements only (no ready external client library)

• Security: shm_open exposes shared mem. objects to all processes

• shm_open is removed on Android (due to security risks)

My Project: inGST (pron. “ingest”)

• Standalone command line tool + client library for apps
• Taking the same pipeline description syntax as GStreamer tools

• Custom elements “in” and “out” for sources and sinks used by app

• Basic design approach
• Built on top of core mechanisms and code from shmsrc / shmsink

• Replacing shm_open with memfd_create on Linux

• Passing shared memory file descriptors over local sockets

inGST: Current Status and Plans

• Happily using it in recent developments ☺

• Caveats
• Immediate focus is on modern Linux systems (w/ memfd_create)

• Not intended to be backward compatible with shmsrc / shmsink

• Near-Term Plans and Research Topics
• Passing meta info together with input / output media frames

• More GST event triggers for apps (forcing key frames is available)

• Open-sourcing on GitHub during Oct 2023

inGST: Longer-Term Plans and Ideas

• Releasing my inGST-based video coder for WebRTC

• Rust library for clients

• Adding cross-platform support (beyond Linux)

• Supporting heterogeneous systems (CXL, etc.)

• Looking forward to others’ feedback too!

Thank you for your time and interest!

linkedin.com/in/vladimirtechman

Vladimir Beloborodov

@VladimirTechMan

github.com/VladimirTechMan

https://www.linkedin.com/in/vladimirtechman/
https://www.linkedin.com/in/vladimirtechman/
https://www.linkedin.com/in/vladimirtechman/
https://twitter.com/vladimirtechman
https://www.linkedin.com/in/vladimirtechman/

	Slide 1: Efficient Integration of GStreamer Pipelines into External S/W Components
	Slide 2: Briefly About Myself
	Slide 3: Media Processing with GStreamer (“GST”)
	Slide 4: Integrating GStreamer with Your App
	Slide 5: Integrating GStreamer with Your App
	Slide 6: Integrating GStreamer with Your App
	Slide 7: GST elements shmsrc and shmsink
	Slide 8: My Project: inGST (pron. “ingest”)
	Slide 9: inGST: Current Status and Plans
	Slide 10: inGST: Longer-Term Plans and Ideas
	Slide 11: Thank you for your time and interest!

