
1

Making IoT safe: Expressing IoT safety,
privacy and security policies

Luoyao Hao, Jan Janak & Henning Schulzrinne

Oct 2023

2

“Safety is the avoidance of unacceptable hazards, including threats
to human lives, the environment, or to costly facilities. Safety
constraints are expressed using assertions that define system
states that should not occur because they may lead to mishaps.”
(Fernandez, 2017)

Reliability Metrics
Reliability: The probability that a system continuously delivers correct service
up to time t, a.k.a. Mean Time Between Failures (MTBF)

Availability: A percentage of the time when a system is expected to be
operational, a.k.a. “number of nines”

Serviceability: A mean time to repair failed system (a.k.a downtime)

Safety: the non-occurrence of catastrophic failures with consequences higher
than the benefits provided by correct service

Fail-safe: Revert to a safe state in the event of a failure

3

Obtaining Dependability by Applying Constraints
What to restrict:

• Who and when can access an IoT system
• Who can communicate with whom and when
• Type of computation performed by system components
• Amount of computation per system component
• Degree of freedom at application level

4

Dependability Research: The art of designing constraints
Dependability Engineering: The art of applying constraints

When systems fail to connect properly

5

• Avoidable tragedy or unavoidable bad connections

The Bronx fire was blamed on a malfunctioning electric space heater
and doors that didn’t close properly.
“We’ll continue to do everything in our power to make sure buildings are
in compliance with our policies, including increasing enforcement under
this new rule,” - NYC Housing Preservation & Development (HPD)

Boeing 737 Max was designed to react to only one
of the plane’s two “angle of attack” sensors that
measure the jet’s incline.

Merrimack Valley Gas Explosions (2018)
• Sensor-actuator mismatch during

system upgrade
• High-pressure gas released into a

low-pressure system
• Monitoring center received alarms, but

had no control over valves

Lessons Learned

• Managing system evolution is hard
• Lack of system description data (GIS)

6
National Transportation Safety Board, “Overpressurization of Natural Gas Distribution System, Explosions,
and Fires in Merrimack Valley, Massachusetts September 13, 2018”, 2019, NTSB/PAR-19/02

https://nasuca.org/wp-content/uploads/2019/09/NTSB-Accident-Report.pdf
https://nasuca.org/wp-content/uploads/2019/09/NTSB-Accident-Report.pdf

Maroochy Sewage Spill (2000)
• SCADA pumps released sewage into river, local

parks, and residential property
• Insider attack by a disgruntled employee in

charge of upgrade
• (DARPA concerned about this in the electrical

grid)

Lessons Learned

• Perimeter-defense won’t stop
insider attacks

• Need mechanism for temporary
maintenance access

• Secure system logging is crucial

7

Slay, Miller, Lessons Learned from the Maroochy Water Breach, ICCIP 2007
Sayfayn, Madnick, “Cybersafety Analysis of the Maroochy Shire Sewage Spill”, MIT, 2017, CISL# 2017-09

https://link.springer.com/chapter/10.1007/978-0-387-75462-8_6
https://cams.mit.edu/wp-content/uploads/2017-09.pdf

Garadget (2017)

Cloud-connected garage door
controller

Bad Amazon review and angry
language led manufacturer to brick
user’s device remotely.

What can we do to prevent power
abuse in cloud-based systems?

8

Gallagher, IoT garage door opener maker bricks customer’s product after bad review, ArsTechnica, 2017

Classic example: Railroad interlocking

Railroads = sensors & actuators
(switches & signals)
“An interlocking system is designed so that it
is impossible to display a signal to proceed
unless the route to be used is proven safe.”

9

https://www.youtube.com/watch?v=Fqy4arxWmnQ

Safety and integrity rules

Classical computer system:

prevent unauthorized access -- integrity, availability

resource locking (semaphores, locks, transactions, …)

• lockouts & interlocking: “cannot start cleaning cycle if the door is open”
• load threshold: "the sum of power of devices must be < T"
• timing constraints: "Heat pump cannot be turned on if it was turned off less than 10 minutes ago"
• actuator storms (control instability or hunting): change in S activates actuator A, which changes S
• safety limit constraints: "Windows cannot be left open for more than 10 minutes when the outside temperature is below

40F"
• resource constraints: "Microwave ovens in kitchens cannot be turned on if we're in mandated ERLP Stage 1"
• nuisance constraints: "The trash compactors cannot be turned on between 9 pm and 6 am on weekdays and 9 pm and 10 am

on weekends" (noise ordinances)
• sanity constraints: "Thermometer values must be between -20 and +40 degrees Celsius", "Relative humidity must not exceed

100%" (report an error otherwise)
• liveness constraints: "Must hear from the device no less than every X seconds", "warning when battery level drops below X"

All can be overridden by authorized users (e.g., building manager) or maybe several (two-person rule)

10

Connecting blindly can be a bad idea

11

Current IoT systems only have single-device
awareness

• External dependencies
• Amazon Echo accidentally shuts down itself by

turning off a socket
• Internal dependencies

• Smart plug deadlock IFTTT routine
• “if on then off”

• Accidently injected by users/voice assistant
(misheard) or intentionally leveraged by
malicious devices

• Connection does not bring better interaction (or
probably worse)

• Safety-critical, energy-critical command
• “set room temperature lower than 50 °F”

Proving correctness & policy intervention

12

Predict: Can the system do
something dangerous or
“stupid”?
e.g., “no dangling devices”, “no direct connection
between sensors and actuators of different types”,
“no out-of-range values for devices with a range”

Prevent that any commands
(automated or manual) cause a
dangerous or undesirable state or
action

liability
codes (e.g.,
electrical &

boiler)

laws & regulation
(FERC, DOT, FAA)self-interest

13

Creating and maintaining policies is hard

• Policies shouldn’t change if the hardware or network address is changed → naming

• Who will be editing the policy rules? Some administrator, or an end-user of the system?

• Start from scratch, or provide blueprints that you can import and perhaps customize?

• If there will be blueprints, how will they be distributed? What customization mechanisms does

the blueprint provide so that it could be customized for a particular system/deployment?

• How does the end-user edit the policy?
• Text file with the policy rules? Through a web-interface? In some other way?

• Is portability a concern?
• Do you want to be able to create policies that are applicable to multiple deployments, e.g., multiple smart

homes?

• Does the policy engine need to perform sanity checking when deploying a new policy, i.e., at

compile-time, for example, to detect conflicts?

Trade-offs for languages

• Programming paradigm:
• imperative, procedural, object-oriented, declarative, functional, reactive, …
• e.g., Python vs. YAML
• familiar to

• Brevity: The shorter, the better.
• User interface: cannot build a web interface for a general language, but can for YAML
• Maintainability

• Does the language provide support for comments?
• Can you split the policy into files or modules? Can policy versioning be supported?

• Extensibility:
• Encapsulation or abstraction, i.e., can you build more complex rules out of simpler ones without having to

know about the implementation details of the building blocks?
• Inheritance or specialization, i.e., the possibility derive new rules from existing ones

• Specificity: Domain-specific (e.g., HA) or general, i.e., capable of expressing policies from a
variety of application domains?

• Compile-type checks: e.g., static typing?

14

Example: Home Assistant = trigger, condition,
action
(trigger) When Paulus arrives
home

(condition [= state]) and it is after
sunset:

(action) Turn the lights on in
the living room

15

The “Management Plane” for IoT systems is missing
– a management plane to prevent systems from doing stupid or undesired things

separate policies from
applications

fire code
electricity code
building code
mechanical code
fuel gas code
regional rules
…

Analogy to authorization service implementation

PEP: Policy Enforcement Point
PAP: Policy Administration Point
PDP: Policy Decision Point
PIP: Policy Information Point

PIP
PDP

PAP

PEP
PEP

Recap: what’s there

• Some ontologies to describe relationships
• E.g., Haystack, IFC, Brick
• Location, service relationships

18

Some takeaways

• Relationships are well-defined for smart building
• Wide representativeness, detailed classes and hierarchy
• Interoperability, heterogeneity, visualization
• Location (connected to, pat of) and function (input, output, serve)

• Not much room to improve them, unless:
• Include user-to-device relationship (ownership)
• Make clear difference between smart building and smart home

• Unclear how to make them useful for a large system
• Defined but not used

19

Given well-described devices and relationships, what can we do to
improve IoT management systems?

Comparison - Languages

Brevity
(p)

Brevity
(e)

Type checking Expressiveness Ease of
use

Implementation Portability

Rego dynamically 6 of 6

Casbin dynamically 2 of 6

Sentinel statically 6 of 6

Polar statically 2 of 6

Python dynamically and
statically

6 of 6

20

Expressiveness: how many examples can be implemented by the languages without further
coding in the engine
Implementation: libraries are available for imports and other languages
Portability: ease of sharing policies

The “Management Plane” for IoT systems is missing

• Policy specification and policy language
• Define backward compatible policies for huge number of things

• properties + relationships, rather than identities
• Authorization-based policy languages are ill-suited

• only define can or can’t do
• have to provide context beforehand
• we may need a more generalized language (e.g., regular programming language)

• Standard interfaces: east-west, north-south
• Retrieve policy, retrieve context from directory
• Intervene devices or systems
• Trigger actions on external devices

21

Policy specification: minimum needs

22

annotation
(not for process)

refer to metadata standard

type of policy - to classify different parsers of policies properties of subject,
object, and their
relationships and the
action - to match policy
from input and to find
impacted devices from DBassertion to evaluate, can be a function

result and instruction to
the operation plane

System model

• Evaluate an incoming command against policies

• Command: an action or a rule
• e.g., turn on the light; if the door is open, turn on the light

• Distinguish “rule” and “policy”
• Rule: if this then do that ⇒ what should happen

• triggered by events or user command (“Alexa, good night”)

• Policy: safety or energy critical, or common sense ⇒ what should not
happen

• Policy server is relationship-based
• No device identity in policy

23

Design principles for the policy plane

• What’s popular and usable should remain unchanged
• Rule-based behavior, easily changeable
• Reuse existing ontologies as much as possible

• Allow multiple types of participants
• Clean separation of their obligations
• Inspection before installation and replacement
• Backward compatibility policy
• Smallest and reusable set of policies

• Clean separation between policy plane and operation plane
• Operation plane should keep intact (UX unchanged)

• Interference and Interaction
• More double-check than deny policy, as situations can be complicated
• e.g., fire + water leak: turn on or off sprinklers

24

These are why we must use
relationships and why we must
define a new policy specification

Summary: we need a policy plane

• Management Plane: policy-centric logics to bridge “isolated islands”
• Policies, metadata, relationships

• Unbind policies and identities for backward compatibility and reusability

• Brings regulatory participants to large IoT systems

• Unprecedented automated and programmable IoT systems
• Mitigate risks of harmful commands, wrong data, or malicious devices

• Highly controllable, integrated system
• e.g., Limit the power consumption lower than 20 kWh per day

25

