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“Safety is the avoidance of unacceptable hazards, including threats 
to human lives, the environment, or to costly facilities. Safety 
constraints are expressed using assertions that define system 
states that should not occur because they may lead to mishaps.” 
(Fernandez, 2017)



Reliability Metrics
Reliability: The probability that a system continuously delivers correct service 
up to time t, a.k.a. Mean Time Between Failures (MTBF)

Availability: A percentage of the time when a system is expected to be 
operational, a.k.a. “number of nines” 

Serviceability: A mean time to repair failed system (a.k.a downtime)

Safety: the non-occurrence of catastrophic failures with consequences higher 
than the benefits provided by correct service

Fail-safe: Revert to a safe state in the event of a failure
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Obtaining Dependability by Applying Constraints
What to restrict:

• Who and when can access an IoT system
• Who can communicate with whom and when
• Type of computation performed by system components
• Amount of computation per system component
• Degree of freedom at application level
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Dependability Research: The art of designing constraints
Dependability Engineering: The art of applying constraints



When systems fail to connect properly
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• Avoidable tragedy or unavoidable bad connections

The Bronx fire was blamed on a malfunctioning electric space heater 
and doors that didn’t close properly.
“We’ll continue to do everything in our power to make sure buildings are 
in compliance with our policies, including increasing enforcement under 
this new rule,” - NYC Housing Preservation & Development (HPD)

Boeing 737 Max was designed to react to only one 
of the plane’s two “angle of attack” sensors that 
measure the jet’s incline. 



Merrimack Valley Gas Explosions (2018)
• Sensor-actuator mismatch during 

system upgrade
• High-pressure gas released into a 

low-pressure system
• Monitoring center received alarms, but 

had no control over valves

Lessons Learned

• Managing system evolution is hard
• Lack of system description data (GIS)
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National Transportation Safety Board, “Overpressurization of Natural Gas Distribution System, Explosions, 
and Fires in Merrimack Valley, Massachusetts September 13, 2018”, 2019, NTSB/PAR-19/02

https://nasuca.org/wp-content/uploads/2019/09/NTSB-Accident-Report.pdf
https://nasuca.org/wp-content/uploads/2019/09/NTSB-Accident-Report.pdf


Maroochy Sewage Spill (2000)
• SCADA pumps released sewage into river, local 

parks, and residential property
• Insider attack by a disgruntled employee in 

charge of upgrade
• (DARPA concerned about this in the electrical 

grid)

Lessons Learned

• Perimeter-defense won’t stop 
insider attacks

• Need mechanism for temporary 
maintenance access

• Secure system logging is crucial
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Slay, Miller, Lessons Learned from the Maroochy Water Breach, ICCIP 2007
Sayfayn, Madnick, “Cybersafety Analysis of the Maroochy Shire Sewage Spill”, MIT, 2017, CISL# 2017-09

https://link.springer.com/chapter/10.1007/978-0-387-75462-8_6
https://cams.mit.edu/wp-content/uploads/2017-09.pdf


Garadget (2017)

Cloud-connected garage door 
controller

Bad Amazon review and angry 
language led manufacturer to brick 
user’s device remotely.

What can we do to prevent power 
abuse in cloud-based systems?
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Gallagher, IoT garage door opener maker bricks customer’s product after bad review, ArsTechnica, 2017



Classic example: Railroad interlocking

Railroads = sensors & actuators 
(switches & signals)
“An interlocking system is designed so that it 
is impossible to display a signal to proceed 
unless the route to be used is proven safe.”
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https://www.youtube.com/watch?v=Fqy4arxWmnQ



Safety and integrity rules

Classical computer system:

prevent unauthorized access -- integrity, availability

resource locking (semaphores, locks, transactions, …)

• lockouts & interlocking: “cannot start cleaning cycle if the door is open”
• load threshold: "the sum of power of devices must be < T"
• timing constraints: "Heat pump cannot be turned on if it was turned off less than 10 minutes ago"
• actuator storms (control instability or hunting): change in S activates actuator A, which changes S
• safety limit constraints: "Windows cannot be left open for more than 10 minutes when the outside temperature is below 

40F"
• resource constraints: "Microwave ovens in kitchens cannot be turned on if we're in mandated ERLP Stage 1"
• nuisance constraints: "The trash compactors cannot be turned on between 9 pm and 6 am on weekdays and 9 pm and 10 am 

on weekends" (noise ordinances)
• sanity constraints: "Thermometer values must be between -20 and +40 degrees Celsius", "Relative humidity must not exceed 

100%" (report an error otherwise)
• liveness constraints: "Must hear from the device no less than every X seconds", "warning when battery level drops below X"

All can be overridden by authorized users (e.g., building manager) or maybe several (two-person rule)
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Connecting blindly can be a bad idea 
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Current IoT systems only have single-device 
awareness

• External dependencies
• Amazon Echo accidentally shuts down itself by 

turning off a socket
• Internal dependencies

• Smart plug deadlock IFTTT routine
• “if on then off”

• Accidently injected by users/voice assistant 
(misheard) or intentionally leveraged by 
malicious devices

• Connection does not bring better interaction (or 
probably worse)

• Safety-critical, energy-critical command
• “set room temperature lower than 50 °F”



Proving correctness & policy intervention
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Predict: Can the system do 
something dangerous or 
“stupid”?
e.g., “no dangling devices”, “no direct connection 
between sensors and actuators of different types”, 
“no out-of-range values for devices with a range”

Prevent that any commands 
(automated or manual) cause a 
dangerous or undesirable state or 
action

liability
codes (e.g., 
electrical & 

boiler)

laws & regulation 
(FERC, DOT, FAA)self-interest



13

Creating and maintaining policies is hard

• Policies shouldn’t change if the hardware or network address is changed → naming

• Who will be editing the policy rules? Some administrator, or an end-user of the system?

• Start from scratch, or provide blueprints that you can import and perhaps customize?

• If there will be blueprints, how will they be distributed? What customization mechanisms does 

the blueprint provide so that it could be customized for a particular system/deployment?

• How does the end-user edit the policy?
• Text file with the policy rules? Through a web-interface? In some other way?

• Is portability a  concern?
• Do you want to be able to create policies that are applicable to multiple deployments, e.g., multiple smart 

homes?

• Does the policy engine need to perform sanity checking when deploying a new policy, i.e., at 

compile-time, for example, to detect conflicts?



Trade-offs for languages

• Programming paradigm: 
• imperative, procedural, object-oriented, declarative, functional, reactive, …
• e.g., Python vs. YAML
• familiar to 

• Brevity: The shorter, the better.
• User interface: cannot build a web interface for a general language, but can for YAML
• Maintainability

• Does the language provide support for comments?
• Can you split the policy into files or modules? Can policy versioning be supported?

• Extensibility:
• Encapsulation or abstraction, i.e., can you build more complex rules out of simpler ones without having to 

know about the implementation details of the building blocks?
• Inheritance or specialization, i.e., the possibility derive new rules from existing ones

• Specificity: Domain-specific (e.g., HA) or general, i.e., capable of expressing policies from a 
variety of application domains?

• Compile-type checks: e.g., static typing?
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Example: Home Assistant = trigger, condition, 
action
(trigger)    When Paulus arrives 
home

(condition [= state])  and it is after 
sunset:

(action)     Turn the lights on in 
the living room
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The “Management Plane” for IoT systems is missing
– a management plane to prevent systems from doing stupid or undesired things

separate policies from 
applications

fire code
electricity code
building code
mechanical code
fuel gas code
regional rules
…



Analogy to authorization service implementation

PEP: Policy Enforcement Point
PAP: Policy Administration Point
PDP: Policy Decision Point
PIP: Policy Information Point 

PIP
PDP

PAP

PEP
PEP



Recap: what’s there

• Some ontologies to describe relationships
• E.g., Haystack, IFC, Brick
• Location, service relationships
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Some takeaways

• Relationships are well-defined for smart building 
• Wide representativeness, detailed classes and hierarchy
• Interoperability, heterogeneity, visualization
• Location (connected to, pat of) and function (input, output, serve)

• Not much room to improve them, unless:
• Include user-to-device relationship (ownership)
• Make clear difference between smart building and smart home

• Unclear how to make them useful for a large system
• Defined but not used
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Given well-described devices and relationships, what can we do to 
improve IoT management systems?



Comparison - Languages

Brevity 
(p)

Brevity 
(e)

Type checking Expressiveness Ease of 
use

Implementation Portability

Rego dynamically 6 of 6

Casbin dynamically 2 of 6

Sentinel statically 6 of 6

Polar statically 2 of 6

Python dynamically and 
statically

6 of 6
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Expressiveness: how many examples can be implemented by the languages without further 
coding in the engine
Implementation: libraries are available for imports and other languages
Portability: ease of sharing policies



The “Management Plane” for IoT systems is missing

• Policy specification and policy language
• Define backward compatible policies for huge number of things

• properties + relationships, rather than identities
• Authorization-based policy languages are ill-suited

• only define can or can’t do
• have to provide context beforehand
• we may need a more generalized language (e.g., regular programming language)

• Standard interfaces: east-west, north-south
• Retrieve policy, retrieve context from directory
• Intervene devices or systems
• Trigger actions on external devices
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Policy specification: minimum needs
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annotation 
(not for process) 

refer to metadata standard

type of policy - to classify different parsers of policies properties of subject, 
object, and their 
relationships and the 
action - to match policy 
from input and to find 
impacted devices from DBassertion to evaluate, can be a function

result and instruction to 
the operation plane



System model

• Evaluate an incoming command against policies

• Command: an action or a rule
• e.g., turn on the light; if the door is open, turn on the light

• Distinguish “rule” and “policy” 
• Rule: if this then do that ⇒ what should happen

• triggered by events or user command (“Alexa, good night”)

• Policy: safety or energy critical, or common sense ⇒ what should not 
happen

• Policy server is relationship-based
• No device identity in policy
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Design principles for the policy plane

• What’s popular and usable should remain unchanged
• Rule-based behavior, easily changeable
• Reuse existing ontologies as much as possible

• Allow multiple types of participants
• Clean separation of their obligations
• Inspection before installation and replacement
• Backward compatibility policy
• Smallest and reusable set of policies

• Clean separation between policy plane and operation plane
• Operation plane should keep intact (UX unchanged)

• Interference and Interaction
• More double-check than deny policy, as situations can be complicated
• e.g., fire + water leak: turn on or off sprinklers 
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These are why we must use 
relationships and why we must 
define a new policy specification



Summary: we need a policy plane

• Management Plane: policy-centric logics to bridge “isolated islands”
• Policies, metadata, relationships

• Unbind policies and identities for backward compatibility and reusability

• Brings regulatory participants to large IoT systems

• Unprecedented automated and programmable IoT systems
• Mitigate risks of harmful commands, wrong data, or malicious devices

• Highly controllable, integrated system
• e.g., Limit the power consumption lower than 20 kWh per day
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